Skin Grafting in the Treatment of Diabetic Foot Soft Tissue Defects

Anca Bordianu¹, Florin Bobirca², Traian Pătrașcu²

¹”Bagdasar-Arseni” Emergency Hospital, Plastic and Reconstructive Department, Bucharest, Romania
²”Dr I. Cantacuzino” Clinical Hospital, General Surgery Department, Bucharest, Romania

Corresponding author:
Florin Bobirca, MD
”Dr I Cantacuzino” Clinical Hospital
General Surgery Department
5-7 Ion Movila Street, Bucharest
Romania
E-mail: dr.bobirca@gmail.com

Received: 09.07.2018
Accepted: 11.09.2018

Rezumat

Plastia cu piele liberă în tratamentul defectelor de părţi moi ale piciorului diabetic

Introducere: Potrivit Organizaţiei Mondiale a Sănătăţii, cazurile de diabet zaharat au crescut de la 108.000.000 în 1980 la 422.000.000 în 2014, cu o creştere mai rapidă în ţările cu venituri mici şi mijlocii. Diabetul cauzează anual aproximativ 1.600.000 decese şi este o cauza majoră de infarct miocardic, accident vascular cerebral, insuficienţă renală, orbire şi amputarea membrilor inferioare. Acest articol oferă informaţii cu privire la tratamentul unei complicaţii frecvente legate de diabet zaharat, şi anume amputaţia piciorului. Defectele mari şi profunde ale piciorului diabetic reprezintă o provocare reconstructivă. Scopul studiului este de a analiza eficienţa metodelor de vindecare folosind grefă de piele coroborat cu terapia cu presiune negativă pentru plăgile rezultate după o intervenţie chirurgicală a piciorului diabetic. În al doilea rând, studiul intenţionează să sublinieze rolul unei secvenţe de abordări multidisciplinare, în acest caz chirurg generalist-chirurg plastician, în asigurarea funcţionalităţii membrilor pelvine.

Material şi Metodă: Au fost analizati retrospectiv 63 de pacienţi cu diabet zaharat, pacienţi care au fost internaţi în spitalele cliniice Dr. I. Cantacuzino şi Bagdasar-Arseni, cu diferite tipuri de plăgi rezultate după intervenţiile chirurgicale ale piciorului diabetic, între anul 2016 şi decembrie 2017. Rezultate: Reconstrucţiile au avut succes pentru 56 de pacienţi, iar în timpul perioadei de urmărire nu au existat complicaţii. Din cei 7 pacienţi cu complicaţii (necroză de grefă cutanată, infecţie a grefei),...
unul a prezentat o auto-avulsie a grefei cutanate.

Cuvinte-cheie: diabet, picior diabetic, grefă de piele, terapie cu presiune negativa, amputație a piciorului

Abstract

Background: According to the World Health Organization, cases of diabetes have risen from 108 million in 1980 to 422 million in 2014, with a more rapid rising in middle- and low-income countries. Diabetes causes yearly approximately 1.6 million deaths, and is a major cause of heart attacks, stroke, kidney failure, blindness and lower limb amputation. This article provides information on the treatment of a frequent complication related to diabetes, namely toe/partial foot amputation. Broad, deep operative defects of the diabetic foot represent a reconstructive challenge. The aim of the study is to analyse the efficiency of healing methods using splitted skin graft corroborated with negative pressure therapy for wounds resulted after diabetic foot surgery. Second of all, the study intends to highlight the role of a sequence of the multidisciplinary approach, in this case general surgeon-plastic surgeon, in assuring the functionality of the pelvic limb.

Methods: 63 diabetic patients were retrospectively analysed, patients that were admitted in Dr.I.Cantacuzino and Bagdasar-Arseni Clinical Hospitals, with different types of wounds resulted after diabetic foot surgery, between January 2016 and December 2017.

Results: The reconstructions were successful in 56 patients, and, during the follow-up period, there were no complications. From the 7 patients with complications (skin graft necrosis, skin graft infection), one had an auto avulsion of the skin graft.

Conclusion: Direct closure is feasible for small-sized wounds. Skin grafts provide effective coverage for large wounds, although they may often produce concave, caved-in, non-aesthetic closures. NPWT (negative pressure wound therapy) is also a very helpful procedure. Flap reconstruction often provides superior functional and aesthetic appearance. Adjacent tissue transfers may be used to close many wounds, but dermal restraint may hinder motion and lead to closure tension. Alternative solution of repair remains the reconstruction with free flaps, which also poses problems, due to arteriopathy.

Key words: diabetes, diabetic foot, splitted skin graft, negative pressure wound therapy, foot amputation
extremity amputations (1,2,3).

Diabetic foot wounds are very complex, tend to rapidly become chronic wounds, and the treatment is usually very difficult, especially for those secondary to amputation (3,4,5). The goal in any reconstructive method is to effect tension-free closure, providing optimal function, and an aesthetic outcome.

Soft tissue defects of the diabetic foot might result from peripheral arterial disease, soft tissue infection (non-traumatic causes), trauma and burns. Also, the risk factors include foot deformities, peripheral neuropathy, abnormal foot pressure, limited joint mobility, and, last but not least, a history of amputation and/or ulceration. Several studies reported that around 85% of all diabetic foot amputations are preceded by foot ulcers (4,5,6,7).

Direct closure is effective for small to medium sized wounds. Very broad, shallow wounds are often best managed with skin grafts. Medium-sized wounds are often reparable with local adjacent tissue transfers. Broad, deep wounds pose the greatest reconstructive challenge. For large, extensive defects, free flaps may be used, but isolating suitable recipient vessels may be problematic, and the donor site morbidity is substantial, due to peripheral arterial disease (8,9,10,11).

NPWT (negative pressure wound therapy), used in diabetic patients after toe or partial foot amputation, or even after infections, showed improved wound healing with a faster rate of granulation tissue formation in the wound bed. NPWT is safe, effective and reliable in treating complex diabetic foot wounds, and could lead to faster healing (9,12,13).

Depending on the defect level, a freestyle propeller flap can be used (rotated and transposed as an island flap based on a single, reliable perforasome). The design of the propeller flap allows for a relatively tension-free closure of the operative wound and, with primary closure, a minimal morbidity of the donor site.

The propeller flap concept requires careful patient selection, meticulous preoperative planning, accurate vessel identification, proper dissection technique, and precise suturing. With appropriate planning and execution, the propeller flap has a low morbidity and high success rate. However, in diabetic patients, especially senior patients with complications of the diabetic disease, success rate of flaps is very low, due to presence of peripheral arterial disease (14,15).

The aim of the article is to analyse the efficiency of the reconstructive methods of the diabetic foot defects using conventional skin graft, corroborated with NPWT. The patients come from a center in which are treated yearly 800-1000 patients with diabetic foot pathology.

Materials and Methods

The study reviews and analyzes the efficiency of splitted skin graft used for treating different wounds of diabetic foot in 63 patients, 41 men and 22 women, between January 2016 and December 2017. There were several inclusion criteria: only diabetic patients, granulated and bacteria free wounds, compliant patients to follow the postoperative recomandations.

The patients’ age ranged between 55 and 93 years old, with an average age of 68 years. 47 patients were smokers, and 16 were non-smokers. 33 of patients were predominant with vascular diabetic disease, 30 were with predominant neuropathic diabetic disease. All of the wounds resulted from surgical treatment: amputation of toe(s)/foot for gangrene or osteoarthritis (Fig. 1). 4 cases were with diabetic Charcot foot.

Negative pressure wound therapy (NPWT) was used in 36 patients to obtain a granulated wound prior to reconstructive surgery (Fig. 2) This method played an important role in the treatment of complex ulcerations of diabetic foot.

The efficacy of NPWT on limb salvage of the diabetic foot is well described in the literature. Nevertheless, the use of this method requires a multidisciplinary approach, and a good surgical debridement.

From 63 patients with transmetatarsal amputations of toe/foot, 36 patients received NPWT, followed by coverage with a split-
thickness skin graft (STSG) (Fig. 3); for the rest of the patients (n=17), who presented good quality granulation tissue, we used only STSG.

Results

This study reviews 63 cases of diabetic foot wound reconstructions, and evaluates the outcome of the used methods.

The reconstructions were successful in 56 patients, and, during the follow-up period, there were no complications. The results of these reconstructive options were satisfactory in terms of functionality and aesthetic outcome (Figs. 3, 4).

For 7 patients there were several complications: 3 cases of skin graft necrosis due to the lack of blood supply, 2 cases of partial skin necrosis, that needed a longer time for healing, 2 cases of skin graft infection, that made necessary the treatment with antibiotics and 1 case was with auto avulsion of the skin graft. All of the other reconstructions with STSG were successful and
with a good outcome (Table 1).

The donor site was in all of the 63 patients located at the thigh, in 6 cases the patients developed donor site infection, that needed treatment with antibiotics, with good outcome, there was no need for surgery.

The length of hospital stay ranged between 5 and 14 days, with an average of 7 days. The period until complete healing of the skin graft was between 4 weeks and 3 months, due to the poor vascular supply of diabetic patients.

Discussion

Large, deep and complex wounds of the diabetic foot represent a challenge to the reconstructive surgeon.

There were 4 cases of skin graft necrosis, this is due to the poor vascularisation. The blood supply is very important in order to consider the indication for skin grafting. For the predominant arteriopathic diabetic patients, in most cases, it was needed to perform a vascular desobstruction method before covering the defect, to ensure the healing process.

For the predominant neuropathic patient

<table>
<thead>
<tr>
<th>Good outcome</th>
<th>Complications STSG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>necrosis</td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Results after split thickness skin graft procedure

Figure 3A. STSG.

Figure 3B. Skin grafted wound - immediate postoperative appearance
the evolution of the skin graft is often good if the healing process does not show any bacterial contamination. For the patients that developed donor site infection there was no need for surgery, only wound dressing and antibiotics were used.

The hospital stay was smaller then a normal duration for a patient with diabetic foot pathology.

Patient collaboration is very important in ensuring the healing process, meaning that recommendations on special dressing, footwear and effort must be strictly followed.

A multidisciplinary approach is needed to ensure healing (eg general surgeons, plastic surgeons, vascular surgeons, nurses). Diabetic foot ulcers have a high risk of amputation and thus an increased rate of mortality (16,17).

A good management of diabetes and a periodical screening of those patients can prevent of at least delay foot ulcers. The main factors of diabetic foot ulcers are peripheral arterial disease, deformity, infection and also previous amputations (6,18,19).

Conclusions

Skin grafting is feasible in diabetic patients with chronic wounds even in the case of the predominant arteriopathic one, if revascularization is previously done.

Total or partial necrosis of the skin graft can occur and its corrlated to prolonged healing period and an increased need for hospitalisation.

The goals of skin grafting for diabetic foot wound are: to assure the functionality of the diabetic foot and to decrease the overall morbidity.

Diabetic foot wounds are very complex, rapidly becoming chronic wounds. The treatment is usually very difficult, and, in the majority of cases, amputation is the final solution.

The indication for skin grafting is much easier to establish for predominantly neuropathic patients, for the patients with vascular diabetic disease it is necessary to consult a vascular surgeon before reconstructive methods are applied.

NPWT (negative pressure wound therapy) helps in improving wound healing, due to faster rate of granulation. NPWT is safe, effective and reliable in treating complex diabetic foot wounds, and could lead to faster healing.

While using a flap could be a surgical option for wound closure, due to increased risks of failure, caused by peripheral arterial disease, and other associated comorbidities, it is a less used surgical solution.

Coverage with a split-thickness skin graft
(STSG), associated with prior NPWT, is a safe, easy, reliable and cost effective solution in the management of diabetic foot wounds.

Conflict of Interests

The authors declare that they have no conflict of interests.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

References