Colonic Goblet Cell Carcinoid: Rarity of a Rarity!
A Case Report and Review of Literature

Abdalla Saad Abdalla Al-Zawi¹, Kashuf Arooj Khan², Ahmed Shah⁴, Amira Asaad⁴, Victoria Salter¹, Marina Barron⁴, Soad Eldruki⁵, Victoria Salih⁶, Salem Omar Alowami³

¹Basildon & Thurrock University Hospital, Essex, UK
²Royal Shrewsbury and Telford Hospital, Shrewsbury, UK
³Department of Pathology, McMaster University, Hamilton, Ontario, Canada
⁴Royal Victoria Hospital, Belfast, UK
⁵Department of Pathology, Benghazi Medical Centre, Benghazi, Libya
⁶Department of Surgery, Kings College Hospital, London, UK

Corresponding author:
Abdalla SAAD ABDALLA, M.B.B.Ch, SD in Surgery, PhD, FRCS
NHS Consultant Breast Surgeon
E-mail: abdalasaad@gmail.com

Received: 07.12.2019
Accepted: 20.01.2020

Rezumat
Carcinoizii cu celule goblet (GCC) sunt tumori neuroendocrine extrem de rare şi sunt caracterizate prin combinaţia lor unică de două tipuri de celule canceroase – neuroendocrine (carcinoid) şi epiteliale (adenocarcinom). În ciuda faptului că GCC este considerată tumură neuro-endocrină (NET), nu prezintă sindromul carcinoid ilicit. GCC apare de obicei în anexă şi reprezintă mai puţin de 14% din toate tumorile apendiceale. GCC extrasapendiceal primar a fost raportat la stomac, duoden, intestinul subţire, colon şi rect. Lucrarea prezintă un caz rar de GCC a colonului ascendent la un bărbat de 57 de ani.

Cuvinte cheie: carcinoid cu celule goblet, tumori neuroendocrine, glandă apocrină, celule care prezintă antigen

Abstract
Goblet cell carcinoids (GCC) are extremely rare neuroendocrine tumours, and characterised by their unique combination of two types of cancer cells – neuroendocrine (carcinoid) and epithelial (adenocarcinoma). In spite of the fact that GCC is regarded as Neuro-Endocrine Tumour (NET), it does not illicit carcinoid
syndrome. GCC usually arises in the appendix and accounting for less than 14% of all appendiceal tumours. Primary extra-appendiceal GCC have been reported as stomach, duodenum, small intestine, colon and rectum. The paper presents a rare case of GCC of the ascending colon in a 57-year-old male.

Key words: goblet cell carcinoid, neuroendocrine tumours, apocrine gland, antigen-presenting cells

Introduction

Goblet cell carcinoid (GCC) is a unique and rare tumour almost exclusively involving appendix with some exceptional locations elsewhere (1). GCC has been a topic of debate since it was first described by Gagne et al in 1969 due to its peculiar histology and biological variability. Consequently, this tumour has been adorned with various different names over the years however, currently all other names except for GCC have been excluded from World Health Organisation (WHO) classification (2). GCC is a hybrid mix of tumour constituting of both epithelial (adenocarcinoma) and neuroendocrine (carcinoid) components containing goblet cells. Current grading systems identify these tumours on the basis of a goblet cell carcinoid tumour containing features of adenocarcinoma, which is a distinguishing factor of this tumour from other gastrointestinal tract adenocarcinomas (3). Although it is commonly diagnosed incidentally following an appendicectomy or an ileocecal resection (4), due diligence should be applied to recognise and appropriately perform grading of these tumours due to their aggressive nature and metastatic potential (5). Prognosis is good if diagnosed in earlier stages with simple appendicectomy requiring for stage I, disease-specific 5-year survivals for stages I, II, III, and IV were 100%, 76%, 22%, and 14%, respectively with overall mean survival was 47 ± 3 months (6).

Appendiceal GCC is predominant in Caucasian population with mean age at diagnosis of 58, there is no variation in incidence between men and women (7). Development of GCC has not been associated with any particular risk factors (8). Another thing of note is despite its histological resemblance, this tumour does not illicit carcinoid syndrome.

Case Report

We present a case of goblet cell carcinoid in a 57-year-old man that initially presented to the hospital with one episode of emesis and a 6-week history of persistent lower abdominal cramping and pain. His past medical history includes 30 pack-year smoking history, 7 g weekly cannabis use, left hip arthroplasty and right knee meniscal repair. The patient has no family history of gastrointestinal malignancy, polyps or inflammatory bowel disease. He sought medical attention as he was unable to relieve his symptoms with over-the-counter analgesics including acetaminophen and ibuprofen. An outpatient ultrasound ordered by his family physician was suggestive of intussusception in his right abdomen, and he was advised to seek urgent medical attention. He presented to the emergency department where a CT scan demonstrated moderate-to-severe cecal wall thickening at the ileocecal valve with mucosal hyperenhancement extending to the terminal ileum, suggestive of inflammatory or infectious aetiologies, in particular inflammatory bowel disease (IBD). Several focal areas of mucosal hyper-enhancement and luminal narrowing were seen on CT.
Fig. 1). However, due to the mass-like appearance of the abnormality, the differential also included a cecal neoplasm. Furthermore, there were multiple hyperenhancing mesenteric lymph nodes adjacent to the terminal ileum, and a prominent hyperenhancing linear structure adjacent to the posterior wall of the cecum measuring up to 1.1 cm in calibre that was suggestive of either inflammatory appendix, in particular Crohn’s appendicitis, or an adjacent inflammatory lymph node (Fig. 1C). There was also luminal narrowing noted in keeping with low to moderate grade partial small bowel obstruction. Upon evaluation in the emergency department, the patient was discharged for urgent outpatient colonoscopy.

The following week, the patient received an esophagogastroduodenoscopy (EGD) and colonoscopy, which demonstrated obstruction in proximal ascending colon with circumferential firm thickening and reduced lumen diameter to approximately 5 mm. At that time, patient reported worsening abdominal pain and distention, inability to tolerate solid oral intake, as well as his stool being more loose and stringy, and was therefore admitted for bowel obstruction. Shortly thereafter, he underwent right hemicolectomy, initially laparoscopically for the obstructing mass,
which was converted to open for en-bloc resec-
tion of the right hemi-colon with anterior
Gerota’s fascia, as the mass was found to be
invading the retroperitoneum.
Upon gross examination, the tumour was
4.7 x 3.9 x 4.5 cm, firm, pale-tan circumferen-
tial mass with ill-defined borders, located in
the ascending colon adjacent to and involving
the ileocecal valve. The tumour had clear
resection margins, but grossly appeared to
penetrate through the serosal surface,
combining with surrounding adipose tissue.
The appendix was not grossly identified in the
hemicolecotomy specimen.
Microscopically, the tumour is seen infil-
trating normal colonic glands as nests and
small clusters of cells with small bland
monomorphic nuclei with eosinophilic cyto-
plasm and abundant cytoplasmic mucin with
signet cell morphology resembling goblet cells
(Fig. 2). Serosal involvement, as well as
lympho-vascular and perineural invasion was
confirmed microscopically. Moreover, 17 out of
19 lymph nodes examined were involved.
Immunohistochemically, the tumour cells
positively reacted with neuroendocrine markers
CD56 and synaptophysin (Fig. 3). Moreover,
epithelial marker CAM 5.2 was also positive,
as well as CK7, CK20, CDX2 (Fig. 3). The
tumour also showed 30% of the cells cycling
with Ki-67. Subsequently, the diagnosis of
grade 3, poorly differentiated goblet cell carci-
roid, pT4a N2b, was made (Table 1).

Discussion
The gastro-intestinal epithelium is composed
from various differentiated cell types, each
type carries out unique and specialized
functions.
Among these types, there is enterocytes,
which are responsible for nutrient and water
absorption, entero-endocrine cells that secrete
hormones, the Paneth cells that release
antimicrobial factors, the chemosensory tuft
cells which play a key role in defense against
helminths, M cells which are responsible for
presentation of luminal antigens to the
immune system and goblet cells that secrete
mucins.

![Figure 2](image-url)
Generally speaking, the majority of cell types located in the colon are also found in the small intestine; these include the enterocytes (also referred to as colonocytes in colon), entero-endocrine cells, goblet cells, and tuft cells (9).

The term goblet refers to the cell's goblet-like shape. The apical portion is shaped like a cup, the abundant mucus laden granules causing distention of the apical portion; its basal portion lacks these granules and is shaped like a stem (Fig. 4).

Goblet cells are typically found in the respiratory tract, reproductive system, gastrointestinal tracts and conjunctiva, usually are surrounded by other columnar epithelial cells (10,11).

It has been well-documented how mucin, a high-molecular-weight glycoprotein produced by the goblet cells, is an integral component of both mucosal homeostasis and defense from infection. The mucin itself is functioning as a dynamic protective barrier to protect the intestinal mucosa, where mucus layer separates the underlying intestinal epithelium from luminal microbes. Mucins are the first molecules that interact with the invading pathogens and thus, can limit microbes binding to other glycoproteins and neutralize the pathogen (12).

Goblet cell is an exocrine glandular cell, uses mainly the merocrine (eccrine) pathway of secretion, secreting vesicles into a duct lumen by exocytosis (Fig. 4). However, some of them may use apocrine way of section by budding-off their secretions, where the apical portion of the secretory cell of the gland

Table 1. Clinico-pathological characteristics of the presented case

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>57</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
</tr>
<tr>
<td>Presenting symptoms</td>
<td>Abdominal pain, vomiting</td>
</tr>
<tr>
<td>Carcinoid syndrome</td>
<td>No</td>
</tr>
<tr>
<td>Site</td>
<td>Ascending colon</td>
</tr>
<tr>
<td>Gross appearance</td>
<td>37 mm, firm mass with ill-defined borders</td>
</tr>
<tr>
<td>Serosal involvement</td>
<td>Yes</td>
</tr>
<tr>
<td>Microscopic features</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Nests and small clusters of mucin cells mucin with signet cell morphology resembling goblet cells</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>Eosinophilic with abundant mucin</td>
</tr>
<tr>
<td>Nuclei</td>
<td>Small bland monomorphic</td>
</tr>
<tr>
<td>Lympho-vascular invasion</td>
<td>Present</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>Present</td>
</tr>
<tr>
<td>Staining</td>
<td></td>
</tr>
<tr>
<td>Mucincarmine/PAS*</td>
<td>Positive</td>
</tr>
<tr>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>Synaptophysin</td>
<td>Positive</td>
</tr>
<tr>
<td>Cam5.2</td>
<td>Positive</td>
</tr>
<tr>
<td>Cytokeratin-7</td>
<td>Positive</td>
</tr>
<tr>
<td>Cytokeratin-20</td>
<td>Positive</td>
</tr>
<tr>
<td>CDX-2</td>
<td>Positive</td>
</tr>
<tr>
<td>CD56</td>
<td>Positive</td>
</tr>
<tr>
<td>Ki-67</td>
<td>30%</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>Involved , 17 out of 19</td>
</tr>
</tbody>
</table>

*PAS: Periodic acid-Schiff
pinches off and enters the duct system lumen (Fig. 5).
McDole et al. from Washington University in 2012 first demonstrated that small intestinal goblet cells are capable by endocytosis to pass antigens from the gut lumen through goblet cells.

Figure 4. Function of Goblet cell, mucin production through merocrine pathway, goblet cell-associated antigen passages (GAP) to the antigen-presenting cells (APCs) cells and chemokines & cytokines production. *Adapted from Knoop et al, 2018 (11).*

Figure 5. Apocrine secretory pathway, the apical portion of the secretory cell of the gland pinches off and enters the duct system lumen containing the mucin. *Adapted from Knoop et al, 2018 (11).*
cell-associated antigen passages (GAP) to the dendritic lamina propria (LP) antigen-presenting cells (APCs) cells located deep to the basement membrane (Fig. 4), this results in inducing adaptive immune responses against the pathogens (13). Also the goblet cells secrete anti-microbial proteins, chemokines, and cytokines which play role in innate immunity beyond barrier maintenance function of the mucin (11).

Goblet cell carcinoid (GCC) is a rare tumour, was first described by Gagne in 1969 (14,15), in addition World Health Organization accepted the term “mucinous carcinoid” as a name for this condition (16).

GCC usually occurs in 5th -6th decade of life with median age at diagnosis of 58.9 years and no significant gender disparity(17,18).It is characterized by mixed phenotype of dual neuroendocrine and glandular differentiation. The majority of primary malignant appendiceal tumours are carcinoid, followed by mucinous adenocarcinoma, GCC remains is as uncommon primary tumour of the appendix, and infrequent to occur elsewhere (19,20). GCC has an estimated incidence of 1 per 2 million individuals, usually arises in the appendix and accounting for less than 14% of all appendiceal tumours (16,18).

Goblet cell carcinoid has been regarded as a distinctive entity, not related to classic carcinoid tumours. A few cases of combined classic carcinoid and goblet cell carcinoid (GCC) tumour have been reported (morphologic variant believed to represent dual parallel differentiation although collision tumour (separate, independent primaries) must also be considered as a possibility (19).

There are rare cases of ostensibly primary extra-appendiceal GCC have been reported as stomach, duodenum, ampulla of Vater (21), jejunum, ileum, cecum, splenic flexure (22,23), ascending colon (24) and rectum (22,25,26, 27,28).

Goblet cell carcinoid of the colon (GCCC) is rare, its clinical behaviour ranges from aggressive to relatively indolent disease. Treatment is based on tumour site, extent of the disease, histological tumour grade and individual patient characteristics (29).

The colorectal neuro-endocrine tumour (NET) including GCCC does not present with any specific symptoms, however may present with abdominal pain, large mass, constipation, intestinal obstruction, tenesmus, haematochezia or anal pain, however as other goblet cell carcinomas, GCCCs tumour does not illicit carcinoid syndrome. These tumours can be detected incidentally during routine investigations such as colonoscopy (17,30,31,32).

Ulcerative colitis patients are at increased risk of mucosal dysplasia and colorectal malignancy development, NET has been reported to be diagnosed with a patient with a long history of ulcerative colitis, however this finding is extremely rare and only 14 cases have been documented between 1980 to 2015 (31).

GCC is also reported to be associated with Neurofibromatosis Type 1 as well as ovarian mucinous cystadenocarcinoma, it has been diagnosed concurrently with conventional colonic adenocarcinoma (24,27,33).

Histologically, the bulk of the tumour is in the lamina propria or submucosal layer, there are two types of tumour cells: a relatively small to intermediate cells, with eosinophilic finely vacuolar or granular eosinophilic cytoplasm, vesicular round nuclei, prominent nucleoli, and mild cytologic atypia, reminiscent of typical carcinoids. The second type is the signet-ring-like (goblet) cell filled with abundant cytoplasmic mucin and crescentic nuclei. Neoplastic cells formed small nests in a solid, cord-like, or glandular pattern separated by stroma or large pools of mucin (1,27,28).

This condition should be differentiated from signet cell carcinoma, which a rare colonic neoplasm and characterized by cells with abundant intracytoplasmic mucin and peripherally placed nuclei, however it is negative with neuroendocrine immunohistochemistry markers. When signet ring cell adenocarcinoma is encountered in a colonic lesion, a colon primary is supported if the neoplastic cells have a cytokeratin 7 (-)/cytokeratin 20 (+) staining pattern, (34,35,36).

Immunohistochemistry has a role in diag-
nosis of GCC, Cytokeratin 7 (CK7) is a basic type II keratin of simple non-keratinizing epithelia protein, which shows strong expression in different epithelial tissues as breast, upper gastrointestinal tract, endometrium, urinarybladder, pancreas, biliary tract, and lungs (37,38), it shows positivity in the carcinoids and up to 70% of the GCC cases (39,40).

Cytokeratin-20 (CK20) is a sensitive marker for Merkel cell carcinoma (Positive in 90–100% of cases), it also shows expression in some cases of extra-pulmonary small cell lung carcinoma (40). In GCC, up to 100% of cases exhibits positivity to CK20 (39).

CAM 5.2 is an immune-stain used to detect Cytokeratin 8(CK8) and Cytokeratin. It is positive in breast, lung, ovary and urothelium tissues. The neuroendocrine cells are positive for Cam 5.2 stains (41,42).

DCX2 is a homeobox gene that encodes a nuclear transcription factor critical for intestinal embryonic development; relatively specific for intestinal epithelium. It shows positive staining in carcinoid tumours (43).

Synaptophysin (Trans-membrane Channel Protein) is a common specific but not sensitive endocrine marker, it is used in carcinoid tumour, Merkel cell carcinoma (MCC) and small cell carcinoma (3,32,40,44,45).

CD56 (Homophilic binding glycoprotein with role in cell–cell adhesion) is a common endocrine marker, it is a sensitive marker for MCC as well as for NK-cell lymphoma, however it lacks specificity (40). Neuroendocrine carcinomas are positive for CD56 (5,46,47).

About 11.6% of GCCs patients presented with a distant metastatic disease at the time of diagnosis, other than the regional lymph nodes ovaries being the most common metastatic site, followed by peritoneal carcinomatosis (7).

The appendicular GCCs are more aggressive compared with conventional appendiceal tumours but less aggressive compared with adenocarcinomas, and they often present with serosal and meso-appendiceal involvement (2).

Whereas surgical resection of GCC remains the mainstay of resectable disease, chemotherapy options offered are 5-fluorouracil (5-FU) and leucovorin (LV) (28). Cytoreductive surgery (CRS) and intraperitoneal chemotherapy have been employed for the peritoneal disease (29,32).

Conclusion

The colon is unusual site of goblet cell carcinoma, a very rare case of ascending colon goblet cell carcinoma has been described. For proper management pathway, colonic GCC should be differentiated from metastasis of appendiceal GC. Another differential diagnosis is signet ring cell carcinoma, which usually forms luminal space and is negative for immunohistochemistry markers. More research is needed to achieve better understanding of the biologic characteristics and implement optimal treatment strategies for this rare neoplasm.

Acknowledgment

We would like to thank Rihana SAAD ABDALLA from the BMAT STEM Academy School, in Harlow-England and Jakub SAAD ABDALLA from the Pemberley Academy Primary School in Harlow-England for their extra-ordinary work to prepare some of the included figures.

Author's Contributions

All authors contributed equally to the manuscript.

Conflict of Interest

The authors declare no conflicts of interests.

References

4. Lamarca A, Nonaka D, Lopez Escola C, Hubner RA, O’Dwyer S,

cancer - a case report and literature review. JMCSR. 2017;05(11):30098-30105.

