Hyperthermic Intraperitoneal Chemotherapy with Mitomycin C versus Oxaliplatin after Cytoreductive Surgery for the Treatment of Peritoneal Metastases of Colorectal Cancer Origin

Chrysanthi Papageorgopoulou¹, Konstantinos Nikolakopoulos², Charalampos Seretis¹,²

¹Surgical Directorate, University General Hospital of Patras, Greece
²Department of General Surgery, George Eliot Hospital NHS Trust, United Kingdom

Resumát

Chimioterapia intraperitoneală hipertermică cu mitomicină C vs oxaliplatină după intervenția chirurgicală citoreductivă pentru tratamentul metastazelor peritoneale ale cancerului colorectal

Context: Mitomicina C și oxaliplatina sunt considerate principalii agenți chimioterapici utilizăți în cadrul chimioterapiei hipertermice intraperitoneale (HIPEC) după efectuarea intervenției chirurgicale de citoreducție pentru metastazele peritoneale ale cancerului colorectal. Cu toate acestea, nu există un consens general acceptat cu privire la alegerea agentului chimioterapic de primă intenție. Acest studiu își propune să rezume într-o manieră cuprinzătoare datele disponibile, având în vedere că schemele individualizate de terapie ţintită sunt în curs de dezvoltare.

Methode: Acest articol este un review narativ, comprehensiv, ce include toate studiile publicate până în martie 2022 care au raportat rezultatele perioperatorii și/sau oncologice după utilizarea mitomicinei C și/sau oxaliplatinei ca agenți principali în chimiotherapia hipertermică după intervenția chirurgicală citoreductivă pentru metastazele peritoneale ale cancerului colorectal.

Rezultate: Acest review include datele dintr-un total de 23 de studii ce analizează un singur agent și 13 studii ce compară utilizarea celor 2 substanțe. În ciuda profilului de siguranță demonstrat al ambelor chimioterapice, eterogenitatea studiilor incluse, natura lor retrospectivă și absența unor studii randomizate relevante împiedică stabilirea unor concluzii sigure cu privire la superioritatea uneia dintre cele două agenți. Cu toate acestea, se pare că morbiditatea perioperatorie este mai redusă în cazul HIPEC pe
Abstract

Mitomycin C and oxaliplatin are considered the main chemotherapeutic agents used in the context of hyperthermic intraperitoneal chemotherapy (HIPEC) after the performance of cytoreductive surgery for peritoneal metastases of colorectal cancer origin. However, there is lack of a generally accepted consensus regarding the optimal choice between them as upfront chemo-therapeutic agent. Our paper aims to summarize in a comprehensive manner the available evidence, while individualised schemes with targeted therapies are under development.

Methods: We conducted a comprehensive, narrative review of the literature including all previous studies until 03/2022, which reported perioperative and/or oncological outcomes after the use of mitomycin C and/or oxaliplatin as main hyperthermic chemotherapy agents after cytoreductive surgery for colorectal peritoneal metastatic disease.

Results: Data from a total of 23 single-agent and 13 comparative studies were included in our review. Despite the demonstrated safety profile of both chemotherapeutics, the heterogeneity of the included studies, their retrospective nature and the absence of relevant randomized trials prohibits the drawing of safe conclusions regarding the superiority of one of the two agents. However, it seems that perioperative morbidity is less with oxaliplatin-based HIPEC, while mitomycin C appears as a more cost-effective option.

Conclusions: Selection of the optimal intraperitoneal chemotherapy agent for peritoneal metastases of colorectal cancer origin after the completion of cytoreductive surgery is still a matter of debate, with significant institutional variation. Further randomized clinical trials between the two commonest HIPEC agents are required, assessing the differences in perioperative outcomes, oncological outcomes, healthcare-associated costs and patients’ quality of life.

Key words: mitomycin, oxaliplatin, hyperthermia, chemotherapy, cytoreduction

Introduction

The development of peritoneal metastases (PM) from colorectal cancer (CRC) was until recently regarded as a terminal condition, with the patients being eligible only for palliative treatment (1). The advent of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has been a revolutionary approach in the treatment of peritoneal dissemination of colorectal cancer and is now considered a standard of care in appropriately selected cases (2-5). This combined procedure aims to remove all the visible cancerous lesions in the abdomen and pelvis with the performance of the necessary surgical resections (cytoreduction). Sequentially, the intraperitoneal chemotherapy, usually in the form of a hyperthermic solution (HIPEC), is administered in
order to eliminate the residual non-visible metastatic deposits. With respect to peritoneal metastases of colorectal cancer origin, Verwaal et al (6) demonstrated in their landmark clinical trial the oncological superiority of CRS & HIPEC compared to the conventional palliative treatment. Moreover, there is mounting evidence that apart from a reliable and safe treatment modality for peritoneal metastases, HIPEC can have an important role as a means of prevention of peritoneal spread in high-risk patients with locally advanced colorectal cancer (7-9).

Given the magnitude of this complex procedure, the optimization of its technical aspects is of critical importance (10,11). In this framework, it is understood that since the performance of optimal cytoreduction lies mainly on the technical expertise of the surgical team and the appropriate patient selection, the optimization of HIPEC constitutes a field with notable clinical and translational research perspectives. Key features of HIPEC, such as the selection of the appropriate chemotherapeutic agent(s), the duration of chemoperfusion, the concentration and temperature of the perfusate represent technical parameters which could be further optimized, aiming to achieve a balance between the avoidance of systemic toxicity and maximal penetration to the residual disease after the completion of cytoreduction (12-14). When referring to HIPEC after CRS for colorectal peritoneal metastases, mitomycin C (MMC) and oxaliplatin are the most widely used principal chemotherapeutic agents in the peritoneal surface malignancy centers (15). From this perspective, it is of paramount importance that further improvement of the technique lies on the thorough knowledge of the pharmacokinetics of the chemotherapeutic agents, the mechanisms through which they exhibit their biological actions, as well as the expected adverse effects, at both local and systemic level. Combining the above-mentioned with the results of the various clinical studies using MMC-based or oxaliplatin-based HIPEC would enable the acquisition of a well-rounded approach towards the critical issue of chemo-therapeutic agent selection for the performance of HIPEC in the treatment of colorectal peritoneal metastases. Herein, we attempt to present in a comprehensive way the relevant clinical data, aiming to identify the similarities and differences between the profiles of MMC and oxaliplatin-based HIPEC for peritoneal metastatic disease arising from (non-appendiceal) colorectal cancer, providing a critical insight into the topic and highlighting the emerging opportunities and necessity for further clinical research in the field.

Methods

We performed a comprehensive review of the published studies assessing the use of MMC or oxaliplatin in intraperitoneal chemotherapy after cytoreductive surgery for peritoneal metastases of colorectal cancer origin, that were published until March 2022 in PubMed search engine, using the following combination of key words: “intraperitoneal chemotherapy”, “HIPEC”, “mitomycin”, “oxaliplatin”, “cancer”, “metastases” and “colorectal”. The relevant references of the retrieved manuscripts were manually scanned to further identify possible relevant studies. Case reports and case series were excluded, as were studies published in languages other than English.

Results

Despite the various differences regarding the performance of HIPEC across the peritoneal surface malignancy centers (36), it is undisputed that MMC and oxaliplatin are the two most widely used and well-studied chemotherapeutic agents during HIPEC after cytoreductive surgery for peritoneal metastases of colorectal cancer origin, with their impact on oncological outcome being extensively investigated in various clinical studies (15), which are herein presented in a descriptive way (Tables 1, 2 for oxaliplatin-based HIPEC & Tables 3-5 for Mitomycin C-based HIPEC).
for colorectal cancer peri-
toneal metastases – trials
with significant percentage
of patients with appen-
diceal origin PM or unclear
discrimination of the out-
come aspects between
patients with the colorectal
vs appendiceal origin were
not included as possible).

Through our literature
search, which yealded a
total of 36 studies, as
demonstrated, the post-
operative mortality and
morbidity rates, as well as
the oncological outcomes in
MMC and oxaliplatin-based
HIPEC are comparable;
however, the methodological
and technical differences, as
well as the different patient
selection criteria and tumor
histo-logical variances across
the existing studies prohibit
the extraction of solid con-
clusions regarding the supe-
riority or non-inferiority of
these two chemotherapeutic
agents.

With respect to the
data from the performed
comparative studies between
mitomycin C vs oxaliplatin-
based HIPEC for colorectal
peritoneal metastases – trials,
Hompes et al (63), using
two separate patient
cohorts that underwent
cytoreductive surgery and
HIPEC for colorectal cancer
peritoneal metastases with oxaliplatin
(n=39)

Table 1. Clinical studies evaluating the role of oxaliplatin-based HIPEC after cytoreductive surgery for colorectal peritoneal metastases (cont)

<table>
<thead>
<tr>
<th>Authors/Date</th>
<th>Study Sample</th>
<th>HIPEC</th>
<th>EPIC</th>
<th>Intra-operative systemic chemotherapy</th>
<th>Temperature/ duration of perfusion</th>
<th>Study key-features / Outcomes</th>
</tr>
</thead>
</table>
| Nikolic et al, 2014 [37] | n=61 oxaliplatin (410 mg/m²) | no | no | 41 °C for 36-60 min | • Median follow-up post-op 22 months (1-83 months)
 • Median OS 51 months (95% confidence interval/CI 22+)
 • Median DFS for patients without residual disease (67/61, 93.44%)
 was 23 months (95% CI 16+)
 • 1, 2- and 6-year OS (DFS) were 78.6% (68.3%), 58.7% (46.7%)
 and 50.5% (38.1%) respectively
 • Patients with PCI <13 (vs PCI≥13) had significantly longer OS and DFS
 [also confirmed for PCI subcategories (PCI <7 vs 7+)
 PCI <13 vs PCI≥13)] |
| Elias et al, 2013 [38] | n=114 oxaliplatin alone (460 mg/m²) n=25 or oxaliplatin (300 mg/m²) + irinotecan (200mg/m²) n=92 | no | i.v. leucovorin 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour | mean 43 °C for 30 min | • mean follow-up 4.5 years, median follow-up 3.9 years
 • post-op mortality 3.5% (4/114 patients)
 • at time of follow-up, 26% of patients alive without recurrence, 32% alive with recurrence and 41% deceased
 • increased risk of death was significantly associated with a rectal primary and a PCI>10 / PCI > 10 remained a significant risk factor for recurrence
 • visible cardiophrenic angle lymph nodes not associated with decrease OS and DFS |
| Gervais et al, 2013 [39] | n=25 oxaliplatin (460 mg/m²) | no | i.v. leucovorin 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour | mean 43 °C for 30 min | • 20% grade 3-5 complications / post-operative mortality 4% (1/25)
 • 3- and 5-year OS rates were, respectively 61% and 36% for patients who received CRS+HIPEC with a 3-year DFS rate of 22%
 • PCI and lymph node status independent predictors of DFS |
| Hompes et al, 2012 [40] | n=48 oxaliplatin (460 mg/m²) | no | i.v. folinic acid 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour | 41-42 °C for 30 min | • 0% 30-day postoperative mortality / 52.1% overall mortality (any grade)
 [2.1% haematologic toxicity]
 • At median follow-up of 22.7 (range 3.2–55.7) months, OS was 97.9%
 95% confidence interval (CI) 96.1–99.7 at 1 year and 88.7% [95% CI 73.6–95.4] at 2 years
 • DFS at 1 year was 65.8% (95% CI 52.3–76.2) and 45.5% (95% CI 34.3–55.9)
and MMC (n=56 patients) from two different HIPEC-centers, performed a comparative analysis of the HIPEC-related toxicity and survival outcomes. Regarding the technical aspect of HIPEC, after the completion of cytoreduction, MMC was administered at a dose of 35 mg/m² for 90 min, while the oxaliplatin dose was 460 mg/m² for a period of 30 min. After statistical correction for the extent of PC, the researchers demonstrated that the overall postoperative complication rate was significantly higher in MMC - patients (OR=2.68 (95% CI: 1.04–6.91), P=0.04), with a comparable intra-abdominal complication rate (OR=0.78 (95% CI: 0.30–2.14), P=0.61) and a tendency towards more extra-abdominal complications in the MMC group (OR=2.23 (95% CI: 0.91–5.43), P=0.079). It should be noted that hematologic toxicity occurred only in the MMC group in 26.8% of patients, manifested as neutropenia or leucopenia; in both groups the post-operative mortality rates were 0%. Regarding the survival outcomes, with the median follow-up being significantly shorter for oxaliplatin-patients (2.8 years) than for MMC-patients (4.7 years), it was demonstrated that the median OS was 37.1 months for oxaliplatin (QQR: 22.4–52.9) for radiolization (QQR: 7.0–25.8). Moreover, the overall survival rates at 1, 2 and 3 years were, respectively, 83%, 74% and 65%, and disease-free survival rates were, respectively, 61%, 50% and 50% for the 22 surviving patients. Incidence of peritoneal recurrence at 1, 2 and 3 years was 11%, 32% and 32% for the 22 surviving patients. PCs were present in 24% (OR=2.51, 95% CI: 1.04–6.09, P=0.04) after HIPEC, lower for oxaliplatin than MMC patients. The median survival 60.1 months, with a minimal 5-fluorouracil follow-up of 18 months.

Table 2. Clinical studies evaluating the role of oxaliplatin-based HIPEC after cytoreductive surgery for colorectal peritoneal metastases

<table>
<thead>
<tr>
<th>Authors/Date</th>
<th>Study Sample</th>
<th>HIPEC</th>
<th>EPIC</th>
<th>Perioperative systemic chemotherapy</th>
<th>Temperature/ duration of perfusion</th>
<th>Study key-features / Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elias et al, 2009 [41]</td>
<td>n=48 (plus n=48 controls -palliative)</td>
<td>oxaliplatin (460 mg/m²)</td>
<td>no</td>
<td>i.v. leucovorin 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour</td>
<td>mean 43°C for 30 min</td>
<td>• mean follow-up 63 months for the HIPEC group & 95.7 months for the standard group. • 2-year and 5-year overall survival rates were 81% and 51% for the HIPEC group, respectively (65% and 13% for the standard group, respectively) • Median survival 23.9 months in the standard group versus 62.7 months in the HIPEC group.</td>
</tr>
<tr>
<td>Ceelen et al, 2008 [42]</td>
<td>n=33 with CRC PM (total 52 patients with PM)</td>
<td>oxaliplatin (460 mg/m²)</td>
<td>no</td>
<td>i.v. folinic acid 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour</td>
<td>41–42°C for 30 min</td>
<td>• 0% 30-day mortality, overall survival is 80% at 1 year post-operatively in the CRC patients. • 0% clinically important bone marrow depletion. • 24% post-op major mortality (entire cohort of 52 patients)</td>
</tr>
<tr>
<td>Elias, et al 2006 [43]</td>
<td>n=30</td>
<td>oxaliplatin (460 mg/m²)</td>
<td>no</td>
<td>i.v. leucovorin 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour</td>
<td>42–44°C for 30 min</td>
<td>• Mean follow-up 55 months (range: 24–80) • Post-operative mortality 0%; 40% grade 2/3 post-operative morbidity • 2/24 patients experienced post-op bone marrow suppression. • At 3 and 5 years, OS rates were 53% and 48.5% respectively. • At 3 and 5 years, DFS rates were 41.5% and 34% respectively. • Median survival 69.1 months.</td>
</tr>
<tr>
<td>Elias et al, 2004 [44]</td>
<td>n=24 (only patients with a minimal follow-up of 18 months)</td>
<td>oxaliplatin (460 mg/m²)</td>
<td>no</td>
<td>i.v. leucovorin 20 mg/m² and 5-fluorouracil 400 mg/m² over 1 hour</td>
<td>42–44°C for 30 min</td>
<td>• 41.6% morbidity - Grade 2 or 3 complications, with 2/24 patients experienced. • Mean follow-up 27.4 months (range: 18.3–49.6) • Overall survival rates at 1, 2 and 3 years were, respectively, 83%, 74% and 65%, and disease-free survival rates were, respectively, 61%, 50% and 50% • Incidence of peritoneal recurrence at 1, 2 and 3 years was 11%, 32% and 32% for the 22 surviving patients. • PCs had no prognostic impact on recurrence, but the presence of associated visceral metastases did not.</td>
</tr>
</tbody>
</table>
Table 3. Clinical studies evaluating the role of MMC-based HIPEC after cytoreductive surgery for colorectal peritoneal metastases

<table>
<thead>
<tr>
<th>Authors/Date</th>
<th>Study Sample</th>
<th>HIPEC</th>
<th>EPIC</th>
<th>Intra-operative systemic chemotherapy</th>
<th>Temperature/ duration of perfusion</th>
<th>Study key-features / Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuijpers et al, 2013 [45]</td>
<td>n=660 patients with CRC PM (plus 300 with PMR)</td>
<td>MMC 35 mg/m² or oxaliplatin 460 mg/m² in re-do procedures</td>
<td>no</td>
<td>i.v. folinic acid 20 mg/m² and 5-fluorouracil 400 mg/m² in the oxaliplatin-based HIPEC cases</td>
<td>41-42°C for 90 min</td>
<td>• 3% mortality and 34% morbidity (grade 3-4 complications) (entire cohort)
• Median follow-up 41 months (95% confidence interval (CI), 36–46 months) (entire cohort)
• Median PFS was 15 months (95% CI 13–17 months) for CRC group
• Median OS 33 months (95% CI 28–38 months) for CRC group
• 3- and 5-year survival rates 46 and 31% respectively for CRC group</td>
</tr>
<tr>
<td>Hamilton, et al, 2011 [46]</td>
<td>n=31</td>
<td>MMC 12-15 mg/m²</td>
<td>5-FU 1000 mg days 1-5</td>
<td>no</td>
<td>40-42°C for 90 min</td>
<td>• median DFS was 9 months and median OS was 27 months
• 3-year and 5-year DFS was 34% and 26%, respectively
• 3-year and 5-year OS was 38% and 34%, respectively
• At a median follow-up of 25 months, 19% disease-free, 16% alive with disease, and 65% dead of disease</td>
</tr>
<tr>
<td>Chua et al, 2010 [47]</td>
<td>n=56</td>
<td>MMC 10-20 mg/m²</td>
<td>no</td>
<td>no</td>
<td>42°C for 90 min</td>
<td>• mean follow-up period 20 months (range 3-63 months); median OS was 38 months
• 1-, 2-, and 3-year OS rates 85%, 66%, and 48% respectively</td>
</tr>
<tr>
<td>Varban et al, 2009 [48]</td>
<td>n=142 (with n=14 having concurrent liver mets)</td>
<td>MMC 30-40 mg</td>
<td>no</td>
<td>no</td>
<td>40.5-42.5°C for 60-120 min</td>
<td>• postoperative morbidity was 57.1% among patients with HM and 40.1% among patients without HM / postoperative mortality was 7.1% among patients with HM and 7.7% among patients without HM
• median OS for patients with HM was 23.0 months / 2-year and 4-year survival rates were 43.3% and 14.4%, respectively
• patients without HM had 2-year and 4-year survival rates of 35.8% and 17.4%, respectively
• OS was not significantly different for patients with and without HM</td>
</tr>
<tr>
<td>Yan et al, 2008 [49]</td>
<td>n=50</td>
<td>MMC 10-12.5 mg/m²</td>
<td>5-FU 650-800 mg/m² days 1-5</td>
<td>no</td>
<td>42°C for 90 min</td>
<td>• 0% post-operative mortality, 30% post-operative morbidity
• median follow-up of 14 months (range 1-56 months)
• median survival was 29 months (range 1-56 months)
• 1-, 2- and 3-year OS of 79%, 67%, and 52%, respectively
• Well/moderate tumor differentiation & completeness of cytoreduction independent prognostic factors of improved survival</td>
</tr>
</tbody>
</table>
The study demonstrated the presence of similar overall grade 3/4 complication rates, which were 42.5% in the oxaliplatin group and 37.5% in the MMC group, respectively (P=0.648), with no hematologic toxicity-related complications occurring in any of the two groups. In addition, the overall rate of revision surgery was 12.5% in the oxaliplatin group versus 15% in the MMC group (P=0.42). Finally, similar in-hospital mortality was noted (depending on the length of hospital stay), reaching 2.5% in the oxaliplatin group versus 0% in the MMC group.

The issue of possible existence of differences regarding the hematologic toxicity between MMC and oxaliplatin-based HIPEC after cytoreductive surgery has also been recently addressed by Votanopoulos et al in a retrospective review of a 187-patient cohort with peritoneal metastases arising from appendiceal carcinoma. The authors did not detect any significant differences regarding the intraoperative blood loss, operating time, and postoperative complications. The study demonstrated the presence of similar overall grade 3/4 complication rates, with no hematologic toxicity-related complications occurring in any of the two groups. In addition, the median survival of 33 months and the 1-, 3-, and 5-year OS were 88%, 44%, and 32%, respectively. PCI >20 and lymph node involvement at the time of the first procedure independent prognostic factors of survival.

Table 4. Clinical studies evaluating the role of MMC-based HIPEC after cytoreductive surgery for colorectal peritoneal metastases

<table>
<thead>
<tr>
<th>Authors/Date</th>
<th>Sample</th>
<th>HIPEC</th>
<th>EPIC</th>
<th>Intra-operative systemic chemotherapy</th>
<th>Temperature/duration of perfusion</th>
<th>Study key-features / Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwaal et al, 2003/2008 [6,50]</td>
<td>n=54 (plus n=51 standard treatment arm)</td>
<td>MMC 17.5 mg/m², followed by every 30 min (70 mg/m²)</td>
<td>no</td>
<td>no</td>
<td>41-42° C for 90 min</td>
<td>• Disease-specific survival was 12.6 months in the standard arm and 22.3 months in the HIPEC arm. • PFS was 7.7 months in the standard arm and 12.6 months in the HIPEC arm. • Median survival of 48 months / 5-year survival of 45% after complete cytoreduction.</td>
</tr>
<tr>
<td>Piso et al 2007 [51]</td>
<td>n=32 (16/32 appendiceal)</td>
<td>MMC 20 mg/m², with doxorubicin 15 mg/m²</td>
<td>5-FU 650 mg/m² days 1-3</td>
<td>no</td>
<td>41-42° C for 60 min</td>
<td>• 0% post-op mortality & 34% post-op morbidity [entire cohort]. • Median follow-up 12 months (range 3–28 months) [entire cohort]. • 1-year OS 96% [entire cohort].</td>
</tr>
<tr>
<td>da Silva et al 2006 & Pesteau et al 2000 [52,53]</td>
<td>n=70 (complete CRS)</td>
<td>MMC 10-12.5 mg/m²</td>
<td>5-FU 650 mg/m² days 1-5</td>
<td>no</td>
<td>41-42° C for 90 min</td>
<td>• Post-op morbidity 18%. • Mean follow-up 46.5 months (range 6 to 241 months). Median survival of 18 months. • 1-, 3-, and 5-year OS were 88%, 44%, and 32%, respectively. • PCI >20 and lymph node involvement at the time of the first procedure independent prognostic factors of survival.</td>
</tr>
<tr>
<td>Zanon et al, 2006 [54]</td>
<td>n=25</td>
<td>MMC 15 mg/m²</td>
<td>no</td>
<td>no</td>
<td>42° C for 60 min</td>
<td>• 4% post-operative mortality, 24% post-operative morbidity. • Median OS was 30.3 months / PFS 17.3 months. • 1- and 2-year OS 84% and 40% respectively.</td>
</tr>
<tr>
<td>Verwaal et al, 2005 [55]</td>
<td>n=117</td>
<td>MMC 25-40 mg/m²</td>
<td>no</td>
<td>no</td>
<td>41-42° C for 90 min</td>
<td>• 6% post-operative mortality / median survival was 21.8 months. • 1-, 3-, and 5-year survival rates were 75%, 28%, and 19%, respectively. • Complete cytoreduction resulted in a median survival of 28 months, and an incomplete cytoreduction in a median of 10 month survival.</td>
</tr>
</tbody>
</table>
In this study, fifty-five patients (29.4%) had oxaliplatin-based HIPEC while 132 patients (70.6%) received MMC-based HIPEC. The authors demonstrated a 14.5% incidence of grade 3/4 neutrophil toxicity and a 10.9% incidence of grade 3/4 platelet toxicity among all patients treated with oxaliplatin-based HIPEC. More specifically, the patients of the oxaliplatin group had a significantly higher incidence of grade 3 and 4 platelet toxicity (7.3% vs 0.0% and 3.6% vs 3.0% respectively), compared to the MMC group (P = 0.008). Moreover, a trend toward statistical significance was noted regarding the incidence of neutropenia. The authors hypothesized that the difference in hematologic toxicity between the two groups could be explained by the higher incidence of neutropenia in the oxaliplatin group, compared to the MMC group (P = 0.008).

Table 5. Clinical studies evaluating the role of MMC-based HIPEC after cytoreductive surgery for colorectal peritoneal metastases

<table>
<thead>
<tr>
<th>Authors/Date</th>
<th>Study Sample</th>
<th>HIPEC</th>
<th>EPIC</th>
<th>Intra-operative systemic chemotherapy</th>
<th>Temperature/duration of perfusion</th>
<th>Study key-features / Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kecmanovic et al 2005 [56]</td>
<td>n=18</td>
<td>MMC</td>
<td>10-12.5 mg/m²</td>
<td>5-FU 15 mg/kg days 1-5</td>
<td>no</td>
<td>42 °C for 120 min</td>
</tr>
<tr>
<td>Gïhen et al 2004 [57]</td>
<td>n=53</td>
<td>MMC</td>
<td>40-60 mg (10 mg/mL)</td>
<td>no</td>
<td>no</td>
<td>46-48 °C for 90 min</td>
</tr>
<tr>
<td>Shen et al, 2004 & Levine et al 2007, 2011 [58-60]</td>
<td>n=248 [entire cohort of 1000 patients]</td>
<td>MMC</td>
<td>30-40 mg [oxaliplatin 200mg/m² in selected cases]</td>
<td>no</td>
<td>no</td>
<td>40-43 °C for 60-120 min</td>
</tr>
<tr>
<td>Pilati et al 2003 [61]</td>
<td>n=34</td>
<td>MMC</td>
<td>3.3 mg/L and CDDP 25 mg/mL</td>
<td>no</td>
<td>no</td>
<td>41.5 °C for 90 min</td>
</tr>
<tr>
<td>Witkamp et al 2001 [62]</td>
<td>n=29 [3/29 appendiceal origin]</td>
<td>MMC</td>
<td>15-40 mg/m³</td>
<td>no</td>
<td>no</td>
<td>40-41 °C for 90 min</td>
</tr>
</tbody>
</table>

HIFCC with MMC vs. Oxaliplatin after CRS for the Treatment of PM of CRC Origin

- Colorectal (including appendiceal) cancer (19). In this study, fifty-five patients had oxaliplatin-based HIPEC (39.4%) and 132 patients had MMC-based HIPEC (70.6%). Oxaliplatin-based HIPEC had a statistically significant difference in the incidence of grade 3 and 4 platelet toxicity (7.3% vs 0.0%) and grade 3/4 neutropenia (3.6% vs 3.0%). The authors hypothesized that the difference in hematologic toxicity between the two groups could be explained by the higher incidence of neutropenia in the oxaliplatin group, compared to the MMC group (P = 0.008).
MMC and oxaliplatin among the cohort of patients who underwent splenectomy, those treated with oxaliplatin had a statistically significant higher incidence of grade 3/4 platelet and neutrophil toxicity. However, no statistically significant difference in hematologic toxicity was noted between the groups of patients who did not undergo splenectomy. Notably, the use of oxaliplatin as main chemotherapeutic agent in HIPEC was found to be an independent prognostic factor for both platelet and neutrophil toxicity. The overall median survival for the 187 patients was 22.6±1.1 months following CRS-HIPEC. Finally, no difference in the survival was noted in the cohort of patients who underwent a splenectomy when compared to the cohort who had spleen preservation, (22.9 versus 21.8 months, P=0.92).

Moreover, in the subset survival analysis comparing survival outcome between MMC and oxaliplatin in the cohort of patients who underwent a splenectomy, no significant difference was noted (23.8 vs 17.8 months, P=0.28).

The possibly greater risk of post-operative complications in oxaliplatin versus MCC-based HIPEC for colorectal PM was also the conclusion of another comparative retrospective study, performed by Rouers et al (65). The authors presented their relevant experience in a group of 21 patients with peritoneal metastases of colorectal origin who they treated in their Institution. The first 13 patients were treated with MMC alone (10 mg/m² for 90 min) and other 8 received 460 mg/m² of oxaliplatin for 30 min with intraoperative systemic chemotherapy of 5-FU (400 mg/m²) and folic acid (20 mg/m²) given one hour prior the hyperthermic chemoperfusion, with the two groups having similar extent of the peritoneal metastatic deposits. Regarding the oncological outcome, the overall and disease-free survival rates among the entire population were respectively 88.7% and 72.6% at 1 year, 72.9% and 37.1% at 2 years, 45.5% and 36.6% at 3 years, 36.6% both at 4 and 5 years. The median survival time was 34 months. After a median follow-up of 24.9 months (range 2-80 months), cancer recurrence was detected in 8 patients (38.0%). Although a comparison of the survival rates between the MMC and oxaliplatin groups was not feasible due to the incomplete follow-up of the oxaliplatin group patients, the authors demonstrated a significantly higher number of Grade 2/4 intra-abdominal complications in the oxaliplatin group; however, no extra-abdominal complications occurred in any of the patients included in the analysis. In a general overview, the morbidity and mortality rates were 23% & 7.6% in the MMC group versus 62.5% & 0% in the oxaliplatin group.

Despite the heterogeneity of these comparative studies and the presence of significant methodological limitations, it seems that oxaliplatin-based HIPEC appears to result in a more frequent occurrence of post-operative complications. Laboratory evidence also points towards this direction, suggesting a higher rate of metabolic and electrolyte disturbances, such as hyponatremia, hyperglycemia and hyperlactemia, in oxaliplatin-based HIPEC, in spite of the usually shorter duration of the hyperthermic chemoperfusion, fact which has been proposed to be attributed to the implementation of the dextrose solution in this technique instead of the more “balanced” carrier solutions in MMC-based HIPEC, which resemble the peritoneal fluid constitution to a greater extent (31). To similar conclusions came Rueth et al (30), who compared the post-HIPEC electrolyte disturbances between a group of 60 patients who underwent MMC-based HIPEC (dose range 12.5–50 mg/m²) and another group of 20 patients receiving oxaliplatin-based HIPEC (dose range 300-400 mg/m²). Compared with MMC, patients receiving oxaliplatin had significantly higher rates of 24-h postoperative hyponatremia, hyperglycemia and metabolic acidosis. In this study, the overall non-electrolyte complication rate was 56.2%. (MMC n=33, 55.0% oxaliplatin n=12, 60%) with a 0% 30-day mortality rate in both groups. Interestingly, although oxaliplatin-based HIPEC resulted in a greater number of metabolic and electrolyte abnormalities post-operatively, these electrolyte disturbances were not associated per se with higher overall
complication rates.

The most recent meta-analysis of Zhang et al, published in 2020, including a total of 11 clinical studies with a sum of 2091 patients, demonstrated similar survival outcomes for the patients who received MMC-based versus oxaliplatin-based HIPEC (66). However, the authors reported, after synthesis of the data from the included studies, that oxaliplatin-based HIPEC was associated with a significantly higher rate of major postoperative complications, leading them to suggest that MMC-first approach should be considered initially. After the publication date of the above-mentioned meta-analyses, two more comparative studies have been published. Benzaquen et al (67) concluded that MMC vs oxaliplatin-based HIPEC were equally safe, with similar toxicity profiles and oncological benefits, however MMC-based HIPEC was significantly less expensive, raising the issue of cost-effectiveness in the balance between the two agents. To the contrary of their results, a retrospective comparative study by Spiliotis et al (68), suggested that MMC-based HIPEC resulted in a significant increase of the overall survival (54 versus 26 months), compared to oxaliplatin-based HIPEC.

Conclusions

Mitomycin C and oxaliplatin are the main chemotherapeutic agents used in HIPEC for the treatment of peritoneal metastatic disease of colorectal cancer origin, with their safety profile and impact on oncological outcomes having been extensively studied in numerous clinical studies. However, the distinct differences in terms of pharmacology, pharmacokinetic and pharmacodynamic behavior in the context of HIPEC reasonably pose the issue of superiority between these two agents, focusing mainly on the reduction of post-operative mortality and morbidity, as well as the survival outcomes. Combining the latter with the biological and molecular heterogeneity of colorectal cancer, aiming to proceed towards a patient-tailored therapeutic approach, the importance of chemotherapeutic selection emerges as an issue of cardinal importance for the optimization of HIPEC and its potential implementation as a preventive strategy in high-risk patients for developing peritoneal metastatic disease.

Until, though, the establishment of individualised HIPEC regimens, combining the data from the available clinical studies, it appears that mitomycin-based HIPEC as an adjunct to successful cytoreductive surgery for colorectal peritoneal metastases bears a lower toxicity profile and is overall more cost-effective compared to oxaliplatin-based HIPEC. However, we strongly advocate that the choice of HIPEC regimen should be an issue to be decided on a multidisciplinary basis, in a joint manner between the surgical and medical oncologists, taking into account the individual patients' surgical history and the types of previously received systemic chemotherapy. Finally, we believe that systematic inpatient and outpatient follow-up of these patients should be performed through national specialist electronic registers, in order to facilitate the relevant clinical research and allow long-term clinical follow-up in a structured manner.

Conflict of Interest Statement

The authors have no competing interests to declare.

Funding/Ethical Approval

No funding or ethical committee approval was required/obtained for the performance of this study.

References

hyperthermic intraoperative intraperitoneal chemotherapy for periportal carcinomatosis

42. Ceelen WP, Peeters M, Noumeysters P, Breusegem C, De Somer F, Pattyn P.
53. Pestieau SR, Sugarbaker PH. Treatment of primary colon cancer with
52. da Silva RG, Sugarbaker PH. Analysis of prognostic factors in seventy
50. Verwaal VJ, van Ruth S, de Bree E, van Sloothen GW, van Tinteren H, Boot
49. Yan TD, Morris DL. Cytoreductive surgery and perioperative intraperitoneal
48. Varban O, Levine EA, Stewart JH, McCoy TP, Shen P. Outcomes associated
47. Chua TC, Morris DL, Esquivel J. Impact of the peritoneal surface disease
severity score on survival in patients with colorectal cancer peritoneal
carcinomatosis undergoing complete cytoreduction and hyperthermic
46. Hamilton T, Lanuke K, Mack LA, Temple WJ. Long-term follow-up in the
45. Kuijpers AM, Mirck B, Aalbers AG, Nienhuijs SW, de Hingh IHJT, Wijzer
4224-30.
Efficacy of intraperitoneal chemotherapy with oxaliplatin in colorectal
42. Chua TC, Morris DL, Esquivel J. Impact of the peritoneal surface disease
41. da Silva RG, Sugarbaker PH. Analysis of prognostic factors in seventy
40. Levine EA, Stewart JH, Russell GB, Geisinger KR, Loggie BL, Shen P.
Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy for
peritoneal surface malignancy: experience with 501 procedures. J Am Coll
al. Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy with
mitomycin C for peritoneal carcinomatosis from nonappendiceal colorectal
38. Levine EA, Stewart JH 4th, Shen P, Russell GB, Loggie BL, Votanopoulos KI.
Intra-peritoneal chemotherapy for peritoneal surface malignancy: experience
Cytoreductive surgery combined with hyperthermic intraperitoneal
Intra-operative chemotherapy for peritoneal carcinomatosis arising from
al. Extensive cytoreductive surgery followed by intra-operative hyperthermic
intrapertoneal chemotherapy with mitomycin-C in patients with peritoneal
use of Oxaliplatin or Mitomycin C in HIPEC treatment for peritoneal
34. Glockin G, von Breitenbach P, Schill HJ, Piso P. Treatment-related morbidity
and toxicity of CRS and Oxaliplatin-based HIPEC compared to a Mitomycin
and Doxorubicin-based HIPEC protocol in patients with peritoneal carcino-
33. Rouers A, Laurent S, Detroz B, Meurisse M. Cytoreductive surgery and
hyperthermic intraperitoneal chemotherapy for colorectal peritoneal carci-
onomatosis: higher complication rate for oxaliplatin compared to Mitomycin
mitomycin C in HIPEC for peritoneal metastasis from colorectal cancer: a
systematic review and meta-analysis of comparative studies. Int J Colorectal
Morbidity associated with the use of oxaliplatin versus mitomycin C in
hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal
carcinomatosis of colorectal or appendiceal origin: a multi-institutional
al. Mitomycin-C versus oxaliplatin during cytoreductive surgery and HIPEC
for peritoneal metastases secondary to colorectal carcinoma: a retrospective