Chirurgia (2025) 120: 502-510 No. 5, September - October Copyright© Celsius

http://dx.doi.org/10.21614/chirurgia.3210

Concurrent Pelvic Organ and Rectal Prolapse: A Narrative Review of Surgical Perspectives

Marian Botoncea^{1,2}, Călin Molnar^{1,2*}, Cosmin Lucian Nicolescu^{1,2}, Catalin Dumintru Cosma^{1,2}, Vlad Olimpiu Butiurca^{1,2}, Dragoș Călin Molnar¹, Claudiu Varlam Molnar³

¹Surgical Clinic No.1, Emergency Clinical County Hospital of Târgu Mureș, Romania

George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania

*Corresponding author:

Professor Călin Molnar, MD, PhD Head of Surgical Clinic No. 1 Emergency Clinical County Hospital 38 Gheorghe Marinescu St, 540139 Târgu Mureş, Romania E-mail: molnar.calin@yahoo.com

Rezumat

Prolaps concomitent al organelor pelvine și rectului: o revizuire narativă a abordărilor chirurgicale

Prolapsul organelor pelvine (POP) si prolapsul rectal (RP) coapar frecvent ca manifestări ale unei disfuncții globale a planșeului pelvin. Această revizuire narativă (1 ianuarie 2015 - 1 august 2025) sintetizează managementul chirurgical al bolii concomitente, subliniind cartografierea simptomelor, examinarea standardizată și fenotiparea ghidată de defecografia prin rezonanță magnetică nucleară dinamică. În seriile retrospective și studiile prospective de mici dimensiuni, repararea minim invazivă într-o singură sesiune, cel mai adesea sacrocolpopexie (± histeropexie) asociată cu rectopexie ventrală, pare fezabilă la pacienți atent selecționați, cu morbiditate perioperatorie similară procedurilor izolate și îmbunătățirea considerabilă a simptomelor de protruzie ("bulge"), a defecației obstructive și a calității vieții. Principiile cheie includ planificarea multidisciplinară, disecția ventrală cu prezervarea nervilor, utilizarea unor plase care nu se suprapun, cu peritonealizare completă, și protocoale de recuperare accelerată; complicațiile legate de plasă după rectopexie sunt rare. În seriile recente, readmiterea la 30 de zile este de aproximativ 2-3%, iar ratele de recurență precoce sunt de aproximativ 10% pentru prolapsul rectal și de 5-8% pentru prolapsul apical, la aproximativ 1-2 ani; în plus, o meta-analiză a 16.471 de pacienți nu a constatat nicio creștere a complicațiilor pe termen scurt cu repararea concomitentă. Per total, în ciuda rezultatelor încurajatoare, heterogenitatea, eroare de selecție și perioada limitată de urmărire limitează certitudinea. Pentru rafinarea indicațiilor și stabilirea eficacității sunt necesare studii de calitate superioară, comparative și cu urmărire pe termen lung.

Cuvinte cheie: rectopexie ventrală cu plasă, rectopexie robotică, rectopexie laparoscopică, sacrocolpopexie, histeropexie, reparație concomitentă, prolaps rectal, prolaps genital

Received: 30.08.2025 Accepted: 20.10.2025

²George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania ³Obstetrics and Gynecology Clinic, Emergency Clinical County Hospital of Târgu Mures,

Abstract

Pelvic organ prolapse (POP) and rectal prolapse (RP) frequently co-occur as manifestations of global pelvic floor dysfunction. This narrative review (January 1, 2015, to August 1, 2025) synthesizes research on the evaluation and surgical management of concurrent disease, emphasizing symptom mapping, standardized examination, and dynamic magnetic resonance defecography (DMRD) - guided phenotyping. Across retrospective series and small prospective studies, single-session, minimally invasive repair - most commonly sacrocolpopexy (± hysteropexy) with ventral rectopexy - appears feasible in well-selected patients, with perioperative morbidity similar to that in isolated procedures and consistent improvements in bulge symptoms, obstructed defecation, and quality of life. Key principles include multidisciplinary planning, nerve-sparing ventral dissection, non-overlapping meshes with complete peritonealization, and enhanced-recovery pathways. Mesh complications after rectopexy are uncommon. Across recent series, 30-day readmission rates are approximately 2-3%, and early recurrence rates are about 10% for rectal prolapse and 5-8% for apical prolapse at roughly 1-2 years; moreover, a meta-analysis of 16,471 patients found no increase in short-term complications with concomitant repair. Overall, despite encouraging outcomes, heterogeneity, selection bias, and limited follow-up constrain certainty. Higher-quality comparative and long-term studies are needed to refine indications and establish long-term effectiveness.

Keywords: ventral mesh rectopexy, robotic rectopexy, laparoscopic rectopexy, sacrocolpopexy, hysteropexy, concomitant repair, rectal prolapse, pelvic organ prolapse

Introduction

Pelvic floor disorders encompass a spectrum of conditions that often coexist and share pathophysiological mechanisms (1). Among them, rectal prolapse (RP) and pelvic organ prolapse (POP) represent two challenging entities that significantly impair quality of life (2,3). Rectal prolapse is defined as a circumferential, full-thickness protrusion of the rectum through the anal canal, frequently associated with obstructed defecation, fecal incontinence, and constipation (4.5). Correspondingly, POP involves the descent of the uterus, vaginal vault, bladder, or posterior vaginal wall (6), and is commonly classified by the Pelvic Organ Prolapse-Quantification (POP-Q) system (7). Both disorders are strongly associated with parity, advancing age, chronic straining, connective tissue weakness, and neuromuscular injury of the levator ani complex (8).

About 21-34% of women with rectal prolapse also demonstrate pelvic organ prolapse, supporting the concept of global pelvic floor dysfunction (9). Such patients often present with a mixture of anorectal, urinary, and vaginal symptoms that cannot be fully addressed by isolated, single-compartment surgery (2,9,10). This has led to the growing adoption of concomitant, single-session, minimally invasive repair, most commonly ventral mesh rectopexy (VMR) for rectal prolapse with sacrocolpopexy (SCP) or sacrohysteropexy (SHP) for apical prolapse, with multiple series and

reviews reporting its feasibility, safety, and symptom improvement (3,11-13). In frail or older patients, perineal approaches may be combined with vaginal native tissue repair (14).

While concomitant repair offers theoretical advantages, including a single round of anesthesia, a single admission with a shorter overall recovery time, the integrated restoration of pelvic mechanics, and a potential reduction in posterior compartment recurrence, published series and reviews also note longer operative times, technical complexity, and mesh-related risks when multiple implants are placed in the deep pelvis (12,15,16). Nevertheless, reports from specialized centers increasingly indicate that combined procedures are feasible and can yield favorable anatomical outcomes (11,12).

We aim to provide a clinically oriented narrative review of the literature on concurrent POP and RP, focusing on diagnostic workup, indications for combined versus staged repair, technical considerations for SCP and ventral rectopexy (VR), perioperative care, outcomes, and complication management.

Materials and Methods

A narrative review of the literature on combined sacrocolpopexy and ventral rectopexy (SCP-VR) and related approaches for multicompartment prolapse was conducted. Sources included PubMed, Scopus, and Web of Science Core Collection. The search covered the period from January 1, 2015, to August 1, 2025, focused on

English language publications on adult humans, and used combinations of the following keywords: "pelvic organ prolapse," "rectal prolapse," "sacrocolpopexy," "sacrohysteropexy," "rectopexy," "ventral rectopexy," "concomitant," "combined," "synchronous," "single-stage," "same session," "defecography," "magnetic resonance defecography," "laparoscopic," and "robotic". We screened 294 records; after removing duplicates and title/abstract screening, 29 full-text articles were assessed, and 9 studies were included. Clinical studies and reviews reporting on concomitant SCP-VR were prioritized. Reference lists from the final selection of publications and relevant guidelines were also screened to identify additional records. Pediatric series and reports focused exclusively on transvaginal mesh were excluded unless essential for context. Given heterogeneity of the articles, we did not perform a meta-analysis. This report follows good-practice guidance for narrative reviews.

Results and Discussion

Epidemiology and Burden

POP and RP disproportionately affect older, multiparous populations and are frequently underreported (17). Symptom clusters span bulge sensation, obstructed defecation, fecal incontinence, urinary urgency or stress incontinence, and sexual dysfunction (18). Beyond symptom burden, POP and RP drive substantial resource utilization through repeated clinical visits, imaging, and operative care (19). Concomitant disease amplifies impairment in quality of life and increases the risk that single-compartment surgery leaves residual symptoms (9). Health systems should anticipate rising demand as populations age and as survivorship increases following pelvic surgery (20).

Pathophysiology and Shared Mechanisms

Global pelvic floor dysfunction is a unifying concept for POP and RP, whereby connective tissue laxity, levator ani muscle injury or denervation, and chronic increases in intra-abdominal pressure lead to multi-compartment descent (8). In POP, apical loss of support drives secondary anterior/posterior wall defects (21); in RP, ventral tethering and restoration of the rectovaginal septum are central to functional repair (22). Shared contributors include parity and delivery trauma, aging-related collagen changes, chronic straining, and prior

pelvic operations (23-25). Phenotypic overlap explains why isolated repairs may incompletely relieve symptoms (11,26).

Clinical Assessment

A comprehensive clinical assessment begins with symptom mapping across compartments: constipation patterns (straining, digital assistance, and incomplete evacuation), characteristics of fecal incontinence, urinary urgency/leakage, prolapse/ bulge awareness, dyspareunia, and prior obstetric or pelvic operations. Baseline burden should be standardized with validated Patient reported outcome measures (PROMs) - pelvic floor disability index (PFDI-20) and pelvic floor impact questionnaire (PFIQ-7) for pelvic floor impact, the Cleveland Clinic (Wexner) Constipation Score for obstructed defecation, and the Vaizey or Wexner scores for continence (27-30). Examination documents POP-Q staging (supine and, when helpful, standing with strain), perineal descent, external prolapse, and anal resting/squeeze tone, noting paradoxical contraction and posterior compartment defects; findings should be reported using an International Continence Society/International Urogynecological Association (ICS/IUGA) terminology to enable cross-team communication (31,32). Ancillary testing is selective and pursued when results are likely to change management; it includes anorectal physiology with a balloon expulsion test (commonly abnormal if >60 s) for outlet obstruction (33,34); DMRD to delineate rectocele, intussusception, enterocele, and multicompartment descent (35-38); and targeted urologic evaluation (stress testing with prolapse reduction ± urodynamics in complex or discordant cases), consistent with contemporary guidance that routine preoperative urodynamics is not required for straightforward cases (39,40).

Imaging and Phenotyping

When available, DMRD provides radiation-free, multi-compartment visualization under nearphysiological conditions, allowing for the quantification of cystocele, apical descent, enterocele, rectocele, intussusception, and external prolapse in a single study (41). Standardized reporting should document the reference planes or lines (e.g., pubococcygeal line and levator hiatus/H-line), organ descent relative to those references, hiatal dimensions/widening, and whether descent is coupled across compartments. These elements were

emphasized in recent consensus statements and technical recommendations (42,43).

Where DMRD is not available, fluoroscopic defecography remains useful for functional assessment of the posterior compartment (applying the As Low as Reasonably Achievable (ALARA) principle); in this regard, several expert templates and guidelines remain in circulation (44,45).

In parallel, 3D endovaginal/transperineal ultrasound can identify levator ani avulsion and related defects, findings that inform counseling, risk stratification, and expectations regarding prolapse surgery (46,47).

Surgical Options for Isolated Compartment Diseases

- Apical Support Procedures (SCP or Sacrohysteropexy (SHP) and Alternatives)
 Abdominal SCP restores apical support using mesh anchored to the anterior longitudinal ligament (48,49). Uterine-sparing sacrohysteropexy (SHP) offers comparable apical correction in selected patients desiring uterine preservation (50). Alternatives such as pectopexy (51) or native-tissue vaginal suspensions (52) may be chosen based on anatomy, comorbidity, and surgeon expertise.
- RP Repairs (VR and Perineal Procedures) VR is used to treat full-thickness RP and involves dissecting the ventral rectovaginal plane, suturing a strip or mesh to the anterior rectal wall, fixing it to the sacral promontory, and then peritonealizing, deliberately avoiding posterior/lateral mobilization to protect autonomic nerves and lower the risk of postoperative constipation. Mid-term series and guidelines report low recurrence with VR and meaningful improvements in obstructed defecation and fecal incontinence; importantly. de novo constipation is less common than with posterior/lateral dissection approaches (5,53). Mesh-related problems after VR are uncommon (≈1–2% overall; most mesh-related events in large series comprise erosions) (54).

For frail or high-anesthetic-risk patients, perineal procedures remain valuable: the Delorme (mucosal sleeve resection with muscular plication) and Altemeier (perineal rectosigmoidectomy, often with levatorplasty) procedures offer shorter anesthesia and recovery times but carry higher recurrence rates than abdominal repairs, so trade-offs should be discussed in shared decision-making. Randomized and meta-analytic evidence

consistently shows greater recurrence after perineal versus abdominal approaches, although functional outcomes and morbidity must be individualized (55,56).

Indications for Concomitant Repair

Concomitant SCP-VR is reasonable when symptoms and examination demonstrate clinically meaningful defects in both compartments, particularly if DMRD shows multi-compartment descent or intussusception coupled with apical loss of support (11,42,57). Additional indications include the failure of an isolated repair with persisting cross-compartment symptoms and patient preference for a single anesthesia and recovery step when both defects are clearly present (11,57,58). Situations favoring staging or avoidance include prohibitive anesthetic risk, active pelvic infection or contaminated fields, and circumstances in which safe mesh placement or peritonealization is not feasible; these align with guideline-based selection principles and mesh-risk considerations (53,57,59). A practical decision pathway is summarized in Fig. 1.

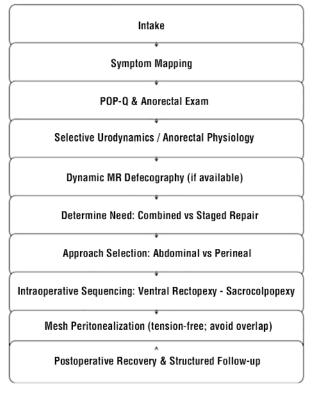


Figure 1. Intake to treatment pathway for concurrent POP and RP

Perioperative Planning and Sequencing

A multidisciplinary plan establishes patient positioning, shared port placement, and the operative sequence. Many teams perform VR first, followed by SCP, to preserve exposure and avoid graft interference (11). Overlapping meshes should be avoided, keeping a ~2-3 cm separation between rectal and vaginal mesh attachment sites, and all implants should be peritonealized to limit bowel contact. Tension-free fixation at the sacral promontory should be documented, with clear identification of the right ureter (11,53,57,60). Concomitant procedures (e.g., anti-incontinence surgery and posterior colporrhaphy) are individualized to symptoms and anatomy (11,53). Enhancedrecovery elements (early diet, opioid-sparing multimodal analgesia, early mobilization, and no routine drains) facilitate faster recovery and shorter length of stay (61).

Outcomes of Concomitant SCP-VR

Concomitant SCP–VR appears feasible in well-selected patients with multicompartment prolapse, with perioperative morbidity comparable to that in single-compartment operations and consistent improvements in bulge symptoms, obstructed defecation, and quality of life (11,13). De novo constipation is relatively uncommon with nervesparing ventral techniques that avoid lateral/posterior mobilization (62). Mesh-related adverse events after ventral rectopexy are infrequent (\approx 1-2%) in recent series and reviews (54).

Heterogeneity in case-mix, technique, and outcome measures limits pooling across studies (11). Recent studies from the last 5 years are summarized in *Table 1*.

Complications and Their Management

· Baseline surgical risks: Bleeding, infection, and

Table 1. Outcomes of contemporary studies on concomitant treatment of pelvic organ prolapse and rectal prolapse

Study	Design & Population	N	Procedure/Comparator	Key Outcomes	Follow-up
Devane LA et al. (13)	Single-center retrospective series of combined robotic ventral mesh rectopexy (VMR) + sacrocolpopexy (SCP)/sacrohysteropexy (2018–2021).	321	Combined robotic VMR + apical fixation (no comparator).	LOS 1.6 days; 30-day readmission 2.5% (8/321); reoperation 1.2% (4/321); no mortality; mean operative time 266 min.	30-day morbidity; institutional series.
Ross JH et al. (63)	Retrospective cohort + postoperative survey of patients undergoing combined robotic ventral rectopexy (VR) + SCP.	107	Combined robotic VMR + SCP (no comparator).	RP/intussusception recurrence 10.4%; objective POP recurrence 7.5%; PFDI-20 mean 95.7; PISQ-12 mean 32.8; PGI-I median 2.	Median 18 months (IQR 8.8–51.8).
Lua-Mailland LL et al. (64)	Retrospective cohort of minimally invasive SCP from 2017–2022; comparison of SCP+RP vs SCP only.	549	SCP + RP (n=144) vs SCP only (n=405).	6-week unplanned healthcare encounters (HRU) similar: 34.0% vs 33.1% (p=0.84); concomitant mid-urethral sling doubled HRU risk.	6-week HRU until routine post-op visit.
Wallace SL et al. (65)	Multicenter matched retrospective cohort at five academic hospitals.	408	POP+RP combined (n=204) vs POP only (n=204).	< 30-day complications similar: 27.5% vs 26.0% (NS); fewer UTIs/ less retention but more wounds/ abscesses in the combined group; subsequent POP surgery: 5.9% vs 7.4% (NS).	<30-day complications; subsequent POP surgeries reported.
Bordeianou L et al. (66)	Retrospective analysis of a prospective multicenter registry of abdominal rectopexy.	198	Rectopexy with (70%) vs. without middle compartment suspension (culdoplasty/colpopexy).	Middle compartment suspension associated with lower early RP recurrence in multivariable analysis.	Short-term recurrence (duration not specified in abstract).
Campagna G et al. (12)	Single-center series of women with multicompartment POP and obstructed defecation.	98	Laparoscopic SCP + VMR (no comparator).	No intra- or postoperative morbidity reported; 78.8% had PGI-I <3; all POP-Q - stage 1 at follow-up; improved FSDS, PISQ-12, Wexner.	1 and 12 months.
Wallace SL et al. (67)	Single-institution retrospective cohort (2008–2019).	63	Combined RP + POP surgery; minimally invasive surgery vs. laparotomy subgroup.	<30-day complications 18.3% overall; none after MIS abdominal approach vs. 37.5% after laparotomy; subsequent reoperation: RP 14%, POP 4.8%.	Reoperation reported; median not stated.

Table 1. Cont'd

Study	Design & Population	N	Procedure/Comparator	Key Outcomes	Follow-up
Smith PE et al. (68)	NSQIP database study (2006–2015).	273	Abdominal combined VR+SCP (n=240) vs. perineal rectopexy + vaginal apical suspension (n=33).	Any perioperative complication 9% overall; no significant difference between perineal vs. abdominal after age adjustment.	30-day NSQIP outcomes.
Hadizadeh A et al. (69)	Seven studies; 16,471 patients (843 concomitant; 7,808 SCP only; 7,820 RP only).	164,71	Concomitant SCP+RP vs. SCP only and RP only.	No increase in overall complications vs. SCP only (OR 0.78; 95% CI 0.56–1.09) or RP only (OR 0.79; 0.49–1.25); serious complications not increased.	Short-term complications.

^{*}N=cases; VMR= ventral mesh rectopexy; SCP= sacrocolpopexy; VR= ventral rectopexy; RP=rectal prolapse; HRU= unplanned healthcare encounters; MIS= minimally invasive surgery; OR=odds ratio; CI=Confidence Interval; NSQIP= National Surgical Quality Improvement Program; LOS= Length of Stay; IQR=Interquartile Range; PSIQ-12=Urinary Incontinence Sexual Questionnaire; PGI-I= Patient Global Impression of Improvement; NS= Not Statistically Significant; FSDS=Female Sexual Distress Scale; UTI=Urinary Tract Infection

- venous thromboembolism apply to both SCP and VR; evaluations per standard colorectal or urogynecological protocols are recommended (70).
- Constipation and outlet obstruction (VR): De novo or persistent constipation should prompt a structured workup: examination, laxative optimization, and then cross-sectional imaging (to assess kinking/adhesions) and endoscopy if stricture or erosion is suspected. Avoiding posterior/lateral mobilization reduces de novo constipation; overall mesh-related adverse events after minimally invasive VMR are uncommon (~1–2%, predominantly erosions) (54,59,71).
- Mesh events after SCP: Vaginal mesh exposure /erosion typically presents with spotting, discharge, dyspareunia, or palpable mesh. Speculum examination should be performed; small, asymptomatic, or minimally symptomatic exposures (<0.5 cm) may be managed with topical vaginal estrogen and observation; persistent or deeper involvement generally requires surgical excision (often by a urogyne/ colorectal team) (72-74). Meta-analyses and large series report SCP mesh exposure rates of up to 7% (range varies by technique and follow-up) (74,75).
- Bowel complications: Ileus/adhesive small-bowel obstruction occurs more often after SCP than native-tissue vaginal repair; estimates of ~2-3% are reported in contemporary reviews. Early evaluation with computed tomography is recommended, with management per obstruction protocols, reserving re-operation for refractory cases. Rarely, barbed suture tails or peritoneal closure can entrap bowel; prevention includes trimming/burying ends and peritonealization (74–76).

- Spondylodiscitis and deep infection (SCP): This is a rare occurrence. Presentations include back pain, malaise, or fever weeks to months after promontory fixation. Magnetic resonance imaging is recommended; management involves culture-directed antibiotics ± mesh/suture removal depending on the extent (77).
- VR mesh issues: Mesh erosion or fistula after VR is rare; most mesh events are erosions. Suspected erosion warrants endoscopic confirmation and multidisciplinary planning for partial or complete mesh removal (54).

Evidence Synthesis

Across studies from January 1, 2015, to August 1, 2025, including retrospective series, small prospective cohorts, and one randomized technique trial. concomitant SCP-VR in women with multicompartment prolapse demonstrates perioperative morbidity comparable to that in isolated SCP or VR and consistent improvement in bulge symptoms, obstructed defecation, and patient-reported quality of life. De novo constipation appears uncommon when nerve-sparing ventral techniques avoid lateral/posterior mobilization, and meshrelated adverse events after ventral rectopexy are infrequent (~1–2% in recent series). Heterogeneity in case-mix, technique, and outcome definitions limits formal pooling, but the direction of effect across reports favors single-session repair in appropriately selected patients treated by multidisciplinary teams (12,13,63–69,74,78).

Strengths of this Review

This review offers a clinically focused synthesis of concomitant sacrocolpopexy-ventral rectopexy,

uses standardized terminology and PROMs, summarizes contemporary series in a compact evidence table, and distills practical decision points for combined versus staged reparir.

Limitations of the Evidence Base

The literature on concomitant SCP-VR is dominated by retrospective case series with selection biases, variable definitions of success, and heterogeneous PROMs. Comparative effectiveness data are sparse, and follow-up often shortens the window for detecting late mesh-related events or recurrence. These constraints inform the cautious tone of this review and underscore the need for standardized reporting.

Gaps and Future Directions

Priorities include prospective registries using core outcome sets; randomized or well-matched comparative studies of concomitant versus staged repair; long-term functional outcomes, including sexual health; imaging—symptom correlation to refine indications; and pragmatic trials of enhanced recovery after surgery elements, tailored to pelvic floor surgery. Consensus on definitions for anatomic success and patient-centered endpoints will also accelerate synthesis and guideline development.

Clinical Bottom Line

- When to combine: Clear apical support loss with posterior compartment defects/internal intussusception on examination or dynamic MR defecography; cross-compartment symptoms; patient preference for a single anesthesia (12,64,65).
- When to stage/avoid: Contaminated field or high mesh-risk context, inability to fully peritonealize, prohibitive anesthetic risk, or unclear symptom drivers (12,13).
- Sequence tips: VR then SCP/SHP; avoid overlapping mesh paths; fully peritonealize; preserve autonomic nerves (12,13).
- Expected outcomes: Perioperative morbidity comparable to that in isolated procedures; ≈2-3% 30-day readmission rate in contemporary series; functional gains in bulge/obstructed defecation; de novo constipation uncommon with nerve-sparing ventral technique (12,13, 63,69).
- · Caveat for counseling: Evidence is largely retro-

spective with heterogeneous follow-up - discuss durability and mesh-specific risks (65,69).

Conclusions

Concomitant SCP–VR aligns surgical correction with the multi-compartment nature of advanced pelvic floor failure. When performed by coordinated teams with standardized assessment, imaging, and follow-up, combined repair can yield meaningful improvements in function with acceptable risk. Methodologically stronger studies and shared outcome frameworks are needed to refine indications and benchmark long-term durability.

Future work should prioritize core-outcome registries and randomized comparisons of concomitant versus staged repair, with long-term functional outcomes, imaging-symptom phenotyping, and consensus definitions of anatomic success and patient-centered endpoints.

Authors' Contributions

Conceptualization, C.M., M.B.; Methodology, C.M., M.B., C.L.N.; Validation, V.O.B., M.B., D.C.M., C.C.D.; Investigation, V.O.B., C.C.D., M.B.; Resources, C.M., C.V.M.; Data curation, M.B., C.L.N.; Writing—original draft preparation, M.B., C.L.N.; Writing—review and editing, C.M.; Visualization, C.L.N., V.O.B.; Supervision, C.M., C.V.M.; Project administration, C.M.; Funding acquisition, C.V.M. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Financial Support

This work was supported by G.E. Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Research Grant Number 294/1/1/16.01.2020.

Ethical Statement

This review synthesizes previously published literature and involved no human participants, identifiable data, or animals.

References

1. Ferrari L, Gala T, Igualada-Martinez P, Brown HW, Weinstein M, Hainsworth A.

- Multidisciplinary team (MDT) approach to pelvic floor disorders. Continence. 2023:7:100716
- Hamahata Y, Akagi K, Maeda T, Nemoto K, Koike J. Management of Pelvic Organ Prolapse (POP) and Rectal Prolapse. J Anus Rectum Colon. 2022;6(2):83–91.
- Botoncea M, Molnar C, Nicolescu CL, Baltă C, Butiurca VO, Martha O, et al. A
 rare case of advanced pelvic organ prolapse concurrent with high-grade rectal
 prolapse: A case report. Medicine (Baltimore). 2025;104(31):e43648.
- Bordeianou L, Hicks CW, Kaiser AM, Alavi K, Sudan R, Wise PE. Rectal Prolapse: An Overview of Clinical Features, Diagnosis, and Patient-Specific Management Strategies. Journal of Gastrointestinal Surgery. 2014;18(5):1059

 –69.
- Oruc M, Erol T. Current diagnostic tools and treatment modalities for rectal prolapse. World J Clin Cases. 2023;11(16):3680–93.
- Jelovsek JE, Maher C, Barber MD. Pelvic organ prolapse. The Lancet. 2007; 369(9566):1027–38.
- Madhu C, Swift S, Moloney-Geany S, Drake MJ. How to use the Pelvic Organ Prolapse Quantification (POP-Q) system? Neurourol Urodyn. 2018;37(S6):S39-S43
- Delancey JOL, Kane Low L, Miller JM, Patel DA, Tumbarello JA. Graphic integration of causal factors of pelvic floor disorders: an integrated life span model. Am J Obstet Gynecol. 2008;199(6):610.e1-5.
- Wallace S, Gurland B. Approaching Combined Rectal and Vaginal Prolapse. Clin Colon Rectal Surg. 2021;34(5):302–10.
- Gurland B, Mishra K. A Collaborative Approach to Multicompartment Pelvic Organ Prolapse. Clin Colon Rectal Surg. 2021;34(1):69–76.
- Gee AD, Lee SK, Ban K, Paraiso MFR. The Current Evidence and How-To on Combined Sacrocolpopexy and Rectopexy. Int Urogynecol J. 2024;35(10): 1955-60
- Campagna G, Panico G, Caramazza D, Anchora LP, Parello A, Gallucci V, et al. Laparoscopic sacrocolpopexy plus ventral rectopexy as combined treatment for multicompartment pelvic organ prolapse. Tech Coloproctol. 2020;24(6):573

 –84.
- Devane LA, Ranson SM, Bustamante-Lopez LA, Uwah MS, Kudish B, Kow N, et al. Combined Robotic Ventral Mesh Rectopexy and Sacrocolpopexy for Multicompartmental Pelvic Organ Prolapse. In Lippincott Williams and Wilkins; 2024. p. 286–90.
- Wallace SL, Sokol ER. 74: Alternative approaches to traditional rectal prolapse repair in conjunction with vaginal prolapse surgery. Am J Obstet Gynecol. 2019; 220(3):S753-4.
- Haouari MA, Boulay-Coletta I, Khatri G, Touloupas C, Anglaret S, Tardivel AM, et al. Complications of Mesh Sacrocolpopexy and Rectopexy: Imaging Review. RadioGraphics. 2023;43(2):e220137.
- Dabica A, Balint O, Olaru F, Secosan C, Balulescu L, Brasoveanu S, et al. Complications of Pelvic Prolapse Surgery Using Mesh: A Systematic Review. J Pers Med. 2024;14(6):622.
- Pang H, Zhang L, Han S, Li Z, Gong J, Liu Q, et al. A nationwide populationbased survey on the prevalence and risk factors of symptomatic pelvic organ prolapse in adult women in China – a pelvic organ prolapse quantification system-based study. BJOG. 2021;128(8):1313–23.
- Rompou A, Sarzo C, Fernandes A, Safadi F, Renna M, Hainsworth A, et al. Anxiety and depression in colorectal Pelvic Floor Disorders among low Socioeconomic Status and ethnic groups. Continence. 2025;13:101734.
- Zumrutbas AE. Understanding Pelvic Organ Prolapse: A Comprehensive Review of Etiology, Epidemiology, Comorbidities, and Evaluation. SIUJ. 2025;6(1):6.
- Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238(2):170–7.
- Barbier H, Carberry CL, Karjalainen PK, Mahoney CK, Galán VM, Rosamilia A, et al. International Urogynecology consultation chapter 2 committee 3: the clinical evaluation of pelvic organ prolapse including investigations into associated morbidity/pelvic floor dysfunction. Int Urogynecol J. 2023;34(11):2657-88.
- Hrabe J, Gurland B. Optimizing Treatment for Rectal Prolapse. Clin Colon Rectal Surg. 2016;29(3):271-6.
- Gao J, Li Y, Hou J, Wang Y. Unveiling the depths of pelvic organ prolapse: From risk factors to therapeutic methods (Review). Exp Ther Med. 2025;29(1):11.
- Rajasingh CM, Gurland BH. Best approaches to rectal prolapse. Ann Laparosc Endosc Surg 2022;7:12.
- Speed JM, Zhang CA, Gurland B, Enemchukwu E. Trends in the Diagnosis and Management of Combined Rectal and Vaginal Pelvic Organ Prolapse. Urology. 2021-150-188-03
- Altman D, Zetterstrom J, Schultz I, Nordenstam J, Hjern F, Lopez A, et al. Pelvic Organ Prolapse and Urinary Incontinence in Women With Surgically Managed Rectal Prolapse: A Population-Based Case-Control Study. Diseases of the Colon & Rectum. 2006;49(1):28–35.
- 27. Vaizey CJ, Carapeti E, Cahill JA, Kamm MA. Prospective comparison of faecal

- incontinence grading systems. Gut. 1999;44(1):77-80.
- Barber MD, Walters MD, Bump RC. Short forms of two condition-specific quality-of-life questionnaires for women with pelvic floor disorders (PFDI-20 and PFIQ-7). American Journal of Obstetrics and Gynecology. 2005;193(1):103–13.
- Agachan F, Chen T, Pfeifer J, Reissman P, Wexner SD. A constipation scoring system to simplify evaluation and management of constipated patients. Diseases of the Colon & Rectum. 1996;39(6):681–5.
- Jorge MJN, Wexner SD. Etiology and management of fecal incontinence. Diseases of the Colon & Rectum. 1993;36(1):77–97.
- Bump RC, Mattiasson A, Bø K, Brubaker LP, DeLancey JOL, Klarskov P, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. m J Obstet Gynecol. 1996;175(1):10–7.
- Haylen BT, De Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J. 2010;21(1):5–26.
- Rao SSC, Benninga MA, Bharucha AE, Chiarioni G, Di Lorenzo C, Whitehead WE. ANMS-ESNM position paper and consensus guidelines on biofeedback therapy for anorectal disorders. Neurogastroenterol Motil. 2015;27(5):594

 –609.
- Paquette IM, Varma M, Ternent C, Melton-Meaux G, Rafferty JF, Feingold D, et al. The American Society of Colon and Rectal Surgeons' Clinical Practice Guideline for the Evaluation and Management of Constipation. Diseases of the Colon & Rectum. 2016;59(6):479–92.
- Welch EK, Ross W, Dengler KL, Gruber DD, Lamb S. The "Ins and Outs" of Dynamic Magnetic Resonance Imaging for Female Pelvic Organ Prolapse. Int Urogynecol J. 2024;35(11):2223–5.
- Arif-Tiwari H, Twiss C, Lin F, Funk J, Vedantham S, Martin D, et al. Improved Detection of Pelvic Organ Prolapse: Comparative Utility of Defecography Phase Sequence to Nondefecography Valsalva Maneuvers in Dynamic Pelvic Floor Magnetic Resonance Imaging. Curr Probl Diagn Radiol. 2019;48(4):342-347.
- Baumann A, Khullar V, Ayoub F, Amaris M. 3D High-Resolution Anorectal Manometry Correlates with Magnetic Resonance Defecography in Detection of Clinically Relevant Rectoceles. Gastroenterology. 2018;154(6):S550–S550.
- Beer-Gabel M, Carter D. Comparison of dynamic transperineal ultrasound and defecography for the evaluation of pelvic floor disorders. Int J Colorectal Dis. 2015;30(6):835-41.
- This document was developed by the American Urogynecologic Society (AUGS)
 Guidelines and Statements Committee with assistance of Cassandra L. Carberry,
 MD, Paul K. Tulikangas, Beri M. Ridgeway, Sarah A. Collins, and Rony A. Adam.
 American Urogynecologic Society Best Practice Statement: Evaluation and
 Counseling of Patients With Pelvic Organ Prolapse. Female Pelvic Med Reconstr
 Surg. 2017;23(5):281-7.
- Urinary incontinence and pelvic organ prolapse in women: management. London: National Institute for Health and Care Excellence (NICE); 2019 Jun.
- Salvador JC, Coutinho MP, Venâncio JM, Viamonte B. Dynamic magnetic resonance imaging of the female pelvic floor-a pictorial review. Insights Imaging. 2019;10(1):4.
- 42. Gurland BH, Khatri G, Ram R, Hull TL, Kocjancic E, Quiroz LH, et al. Consensus Definitions and Interpretation Templates for Magnetic Resonance Imaging of Defecatory Pelvic Floor Disorders: Proceedings of the Consensus Meeting of the Pelvic Floor Disorders Consortium of the American Society of Colon and Rectal Surgeons, the Society of Abdominal Radiology, the International Continence Society, the American Urogynecologic Society, the International Urogynecological Association, and the Society of Gynecologic Surgeons. AJR Am J Roentgenol. 2021;217(4):800-812.
- Chill HH, Martin LC, Chang C, Abramowitch SD, Rostaminia G. Pubococcygeal Line Versus H-line as MR Defecography Reference for Bladder Descent. Int Urogynecol J. 2024 Mar;35(3):537-44.
- 44. Paquette I, Rosman D, El Sayed R, Hull T, Kocjancic E, Quiroz L, et al. Consensus Definitions and Interpretation Templates for Fluoroscopic Imaging of Defecatory Pelvic Floor Disorders: Proceedings of the Consensus Meeting of the Pelvic Floor Consortium of the American Society of Colon and Rectal Surgeons, the Society of Abdominal Radiology, the International Continence Society, the American Urogynecologic Society, the International Urogynecological Association, and the Society of Gynecologic Surgeons. Dis Colon Rectum. 2021; 64(1):31–44
- Dexter E, Walshaw J, Wynn H, Dimashki S, Leo A, Lindsey I, et al. Faecal incontinence-a comprehensive review. Front Surg. 2024;11:1340720.
- Dietz HP, Shek KL, Low GK. All or nothing? A second look at partial levator avulsion. Ultrasound in Obstet & Dyches 2022;60(5):693–7.
- Rotstein E, Ullemar V, Starck M, Tegerstedt G. Three-dimensional endovaginal ultrasound assessment using the levator ani deficiency score in primiparas: A

- replication study. Acta Obstet Gynecol Scand. 2023;102(9):1236-42.
- Poutakidis G, Geale K, Morcos E. Quality-Adjusted Life-Years Outcome 1 Year After Surgery by Robotics-Assisted Sacral Hystero-Colpopexy Versus Vaginal Mesh for Pelvic Organ Prolapse Repair. Int Urogynecol J. 2025. Online ahead of print.
- Botoncea M, Molnar C, Marginean C, Martha O, Gurzu S, Butiurca VO, et al. Parietex ProGripTM Self-Fixating Mesh in Surgical Treatment of Pelvic Organ Prolapse. Chirurgia (Bucur). 2020;115(5):650–5.
- Dogan O, Yassa M, Eren E, Birol Ilter P, Tug N. A randomized, prospective, controlled study comparing uterine preserving laparoscopic lateral suspension with mesh versus laparoscopic sacrohysteropexy in the treatment of uterine prolapse. Eur J Obstet Gynecol Reprod Biol. 2024;297:120-125.
- Chuang FC, Chou YM, Wu LY, Yang TH, Chen WH, Huang KH. Laparoscopic pectopexy: the learning curve and comparison with laparoscopic sacrocolpopexy. Int Urogynecol J. 2022;33(7):1949–56.
- Cola A, Marino G, Milani R, Barba M, Volontè S, Spelzini F, et al. Native-tissue prolapse repair: Efficacy and adverse effects of uterosacral ligaments suspension at 10-year follow up. Intl J Gynecology & Obste. 2022;159(1):97–102.
- Bordeianou L, Paquette I, Johnson E, Holubar SD, Gaertner W, Feingold DL, et al. Clinical Practice Guidelines for the Treatment of Rectal Prolapse. Diseases of the Colon & Rectum. 2017;60(11):1121-31.
- Hess GF, Nocera F, Taha-Mehlitz S, Christen S, von Strauss Und Torney M, Steinemann DC. Mesh-associated complications in minimally invasive ventral mesh rectopexy: a systematic review. Surg Endosc. 2024;38(12):7073-82.
- Fuschillo G, Selvaggi L, Cuellar-Gomez H, Pescatori M. Comparison between perineal and abdominal approaches for the surgical treatment of recurrent external rectal prolapse: a systematic review and meta-analysis. Int J Colorectal Dis. 2025;40(1):26.
- Pellino G, Fuschillo G, Simillis C, Selvaggi L, Signoriello G, Vinci D, et al. Abdominal versus perineal approach for external rectal prolapse: systematic review with meta-analysis. BJS Open. 2022;6(2):zrac018.
- Perry WRG, Christensen P, Collinson RJ, Cornish JA, D'Hoore A, Gurland BH, et al. Ventral Rectopexy: An International Expert Panel Consensus and Review of Contemporary Literature. Diseases of the Colon & Rectum. 2025;68(5):593–607.
- Geltzeiler CB, Birnbaum EH, Silviera ML, Mutch MG, Vetter J, Wise PE, et al. Combined rectopexy and sacrocolpopexy is safe for correction of pelvic organ prolapse. Int J Colorectal Dis. 2018;33(10):1453–9.
- van der Schans EM, Boom MA, El Moumni M, Verheijen PM, Broeders I a. MJ, Consten ECJ. Mesh-related complications and recurrence after ventral mesh rectopexy with synthetic versus biologic mesh: a systematic review and metaanalysis. Tech Coloproctol. 2022;26(2):85–98.
- Loh KC, Umanskiy K. Ventral Rectopexy. Clinics in Colon and Rectal Surgery. 2021;34(1):62–8.
- Irani JL, Hedrick TL, Miller TE, Lee L, Steinhagen E, Shogan BD, et al. Clinical practice guidelines for enhanced recovery after colon and rectal surgery from the American Society of Colon and Rectal Surgeons and the Society of American Gastrointestinal and Endoscopic Surgeons. Surg Endosc. 2023;37(1):5-30.
- Leventoglu S, Mentes B, Balci B, Yildiz A. Surgical Techniques for Rectal Prolapse. Gastroenterology Insights. 2021;12(3):310–8.
- 63. Ross JH, Yao M, Wallace SL, Paraíso MFR, Vogler SA, Propst K, et al. Patient

- Outcomes After Robotic Ventral Rectopexy With Sacrocolpopexy. Urogynecology. 2024;30(4):425–32.
- Lua LL, Stanley EE, Yao M, Paraíso MFR, Wallace SL, Ferrando CA. Healthcare Resource Utilization Following Minimally Invasive Sacrocolpopexy: Impact of Concomitant Rectopexy. Int Urogynecol J. 2024;35(5):1001-1010.
- Wallace SL, Kim Y, Lai E, Mehta S, Gaigbe-Togbe B, Zhang CA, et al. Postoperative complications and pelvic organ prolapse recurrence following combined pelvic organ prolapse and rectal prolapse surgery compared with pelvic organ prolapse only surgery. Am J Obstet Gynecol. 2022;227(2):317.e1-317.e12
- Bordeianou L, Ogilvie J, Murphy M, Hyman N, Vogler S, Ky A. Does concomitant pelvic organ prolapse repair at the time of rectopexy impact rectal prolapse recurrence rates? A retrospective review of a prospectively collected pelvic floor disorders consortium quality improvement database. Dis Colon Rectum. 2022; 65(12):1522-1530.
- Wallace SL, Syan R, Enemchukwu EA, Mishra K, Sokol ER, Gurland B. Surgical approach, complications, and reoperation rates of combined rectal and pelvic organ prolapse surgery. Int Urogynecol J. 2020;31(10):2101–8.
- Smith PE, Hade EM, Pandya LK, Nekkanti S, Hundley AF, Hudson CO. Perioperative Outcomes for Combined Ventral Rectopexy with Sacrocolpopexy Compared to Perineal Rectopexy with Vaginal Apical Suspension. Female Pelvic Med Reconstr Surg. 2020;26(6):376-381.
- Hadizadeh A, Chill HH, Leffelman A, Paya-Ten C, Chang C, Goldberg RP, et al. Short-Term Complications of Concomitant Pelvic Organ Prolapse and Rectal Prolapse Repair: A Systematic Review and Meta-Analysis. Int Urogynecol J. 2025;36(4):733-740.
- Skervin A, Levy B. Management of common surgical complications. Surgery (Oxford). 2020;38(3):128–32.
- Naeem M, Anwer M, Qureshi MS. Short term outcome of laparoscopic ventral rectopexy for rectal prolapse. Pak J Med Sci. 2016;32(4):875–9.
- Cheng YW, Su TH, Wang H, Huang WC, Lau HH. Risk factors and management of vaginal mesh erosion after pelvic organ prolapse surgery. Taiwan J Obstet Gynecol. 2017;56(2):184-187.
- Çetin Arslan H, Arslan K. Risk factors and outcomes of vaginal mesh erosions after pelvic reconstructive surgery: A retrospective cohort study. Medicine. 2025; 104(19):e42442.
- Haouari MA, Boulay-Coletta I, Khatri G, Touloupas C, Anglaret S, Tardivel AM, et al. Complications of Mesh Sacrocolpopexy and Rectopexy: Imaging Review. Radiographics. 2023;43(2):e220137.
- Shahid U, Chen Z, Maher C. Sacrocolpopexy: The Way I Do It. Int Urogynecol J. 2024;35(11):2107–23.
- Schachar JS, Matthews CA. Robotic-assisted repair of pelvic organ prolapse: a scoping review of the literature. Transl Androl Urol. 2020;9(2):959–70.
- Shenhar C, Goldman HB. Management of Sacrocolpopexy Mesh Complications

 A Narrative Review and Clinical Experience from a Large-Volume Center. Int Urogynecol J. 2025;36(2):231-41.
- Morciano A, Caliandro D, Campagna G, Panico G, Giaquinto A, Fachechi G, et al. Laparoscopic ventral rectopexy plus sacral colpopexy: continuous locked suture for mesh fixation. A randomized clinical trial. Arch Gynecol Obstet. 2022; 306(5):1573-9.